@@ -1253,8 +1253,8 @@ ROLLUP ( <replaceable>e1</>, <replaceable>e2</>, <replaceable>e3</>, ... )
12531253GROUPING SETS (
12541254 ( <replaceable>e1</>, <replaceable>e2</>, <replaceable>e3</>, ... ),
12551255 ...
1256- ( <replaceable>e1</>, <replaceable>e2</> )
1257- ( <replaceable>e1</> )
1256+ ( <replaceable>e1</>, <replaceable>e2</> ),
1257+ ( <replaceable>e1</> ),
12581258 ( )
12591259)
12601260</programlisting>
@@ -1282,7 +1282,7 @@ GROUPING SETS (
12821282 ( b, c ),
12831283 ( b ),
12841284 ( c ),
1285- ( ),
1285+ ( )
12861286)
12871287</programlisting>
12881288 </para>
@@ -1294,27 +1294,27 @@ GROUPING SETS (
12941294 units for the purposes of generating the individual grouping sets.
12951295 For example:
12961296<programlisting>
1297- CUBE ( (a,b), (c,d) )
1297+ CUBE ( (a, b), (c, d) )
12981298</programlisting>
12991299 is equivalent to
13001300<programlisting>
13011301GROUPING SETS (
1302- ( a, b, c, d )
1303- ( a, b )
1304- ( c, d )
1302+ ( a, b, c, d ),
1303+ ( a, b ),
1304+ ( c, d ),
13051305 ( )
13061306)
13071307</programlisting>
13081308 and
13091309<programlisting>
1310- ROLLUP ( a, (b,c), d )
1310+ ROLLUP ( a, (b, c), d )
13111311</programlisting>
13121312 is equivalent to
13131313<programlisting>
13141314GROUPING SETS (
1315- ( a, b, c, d )
1316- ( a, b, c )
1317- ( a )
1315+ ( a, b, c, d ),
1316+ ( a, b, c ),
1317+ ( a ),
13181318 ( )
13191319)
13201320</programlisting>
@@ -1333,27 +1333,27 @@ GROUPING SETS (
13331333 clause, then the final list of grouping sets is the cross product of the
13341334 individual items. For example:
13351335<programlisting>
1336- GROUP BY a, CUBE(b,c), GROUPING SETS ((d), (e))
1336+ GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
13371337</programlisting>
13381338 is equivalent to
13391339<programlisting>
13401340GROUP BY GROUPING SETS (
1341- (a,b,c, d), (a,b,c, e),
1342- (a,b, d), (a,b, e),
1343- (a,c, d), (a,c, e),
1344- (a,d), (a,e)
1341+ (a, b, c, d), (a, b, c, e),
1342+ (a, b, d), (a, b, e),
1343+ (a, c, d), (a, c, e),
1344+ (a, d), (a, e)
13451345)
13461346</programlisting>
13471347 </para>
13481348
13491349 <note>
13501350 <para>
1351- The construct <literal>(a,b)</> is normally recognized in expressions as
1351+ The construct <literal>(a, b)</> is normally recognized in expressions as
13521352 a <link linkend="sql-syntax-row-constructors">row constructor</link>.
13531353 Within the <literal>GROUP BY</> clause, this does not apply at the top
1354- levels of expressions, and <literal>(a,b)</> is parsed as a list of
1354+ levels of expressions, and <literal>(a, b)</> is parsed as a list of
13551355 expressions as described above. If for some reason you <emphasis>need</>
1356- a row constructor in a grouping expression, use <literal>ROW(a,b)</>.
1356+ a row constructor in a grouping expression, use <literal>ROW(a, b)</>.
13571357 </para>
13581358 </note>
13591359 </sect2>
0 commit comments