I'm looking for a solution to sum per column in a 2D array ("a" in the example below) and starting from a cell position as defined in a different 1D array ("ref" in the example below).
I have tried the following:
import numpy as np
a = np.arange(20).reshape(5, 4)
print(a) # representing an original large 2D array
ref = np.array([0, 2, 4, 1]) # reference array for defining start of sum
s = a.sum(axis=0)
print(s) # Works: sums all elements per column
s = a[2:].sum(axis=0)
print(s) # Works as well: sum from the third element till end per column
# This is what I look for: sum per column starting at element defined by ref[]
s = np.zeros(4).astype(int) # makes an empty 1D array
for i in np.arange(4): # for each column
for j in np.arange(ref[i], 5):
s[i] += a[j, i] # sums all elements from ref till end (i.e. 5)
print(s) # This is the desired outcome
for i in np.arange(4):
s = a[ref[i]:].sum(axis=0)
print(s) # No good; same as a[ref[4]:].sum(axis=0) and here ref[4] = 1
s = np.zeros(4).astype(int) # makes an empty 1D array
for i in np.arange(4):
s[i] = np.sum(a[ref[i]:, i])
print(s) # Yes; this is also the desired outcome
Is it possible to realize this without using a for loop? Does numpy have functions for doing this in a single step?
s = a[ref:].sum(axis=0)
This would be nice, but is not working.
Thank you for your time!