Python | Pandas dataframe.cov()
Last Updated :
16 Nov, 2018
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages.
Pandas is one of those packages and makes importing and analyzing data much easier.
Pandas
dataframe.cov() is used to
compute pairwise covariance of columns.
If some of the cells in a column contain
NaN value, then it is ignored.
Syntax: DataFrame.cov(min_periods=None)
Parameters:
min_periods : Minimum number of observations required per pair of columns to have a valid result.
Returns: y : DataFrame
Example #1: Use
cov() function to find the covariance between the columns of the dataframe.
Note : Any non-numeric columns will be ignored.
Python3
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, 6, 4],
"B":[11, 2, 4, 3],
"C":[4, 3, 8, 5],
"D":[5, 4, 2, 8]})
# Print the dataframe
df
Output :

Now find the covariance among the columns of the data frame
Python3 1==
# To find the covariance
df.cov()
Output :
Example #2: Use
cov() function to find the covariance between the columns of the dataframe which are having
NaN value.
Python3
# importing pandas as pd
import pandas as pd
# Creating the dataframe
df = pd.DataFrame({"A":[5, 3, None, 4],
"B":[None, 2, 4, 3],
"C":[4, 3, 8, 5],
"D":[5, 4, 2, None]})
# To find the covariance
df.cov()
Output :