This new white paper by Stanford Institute for Human-Centered Artificial Intelligence (HAI) titled "Rethinking Privacy in the AI Era" addresses the intersection of data privacy and AI development, highlighting the challenges and proposing solutions for mitigating privacy risks. It outlines the current data protection landscape, including the Fair Information Practice Principles, GDPR, and U.S. state privacy laws, and discusses the distinction and regulatory implications between predictive and generative AI. The paper argues that AI's reliance on extensive data collection presents unique privacy risks at both individual and societal levels, noting that existing laws are inadequate for the emerging challenges posed by AI systems, because they don't fully tackle the shortcomings of the Fair Information Practice Principles (FIPs) framework or concentrate adequately on the comprehensive data governance measures necessary for regulating data used in AI development. According to the paper, FIPs are outdated and not well-suited for modern data and AI complexities, because: - They do not address the power imbalance between data collectors and individuals. - FIPs fail to enforce data minimization and purpose limitation effectively. - The framework places too much responsibility on individuals for privacy management. - Allows for data collection by default, putting the onus on individuals to opt out. - Focuses on procedural rather than substantive protections. - Struggles with the concepts of consent and legitimate interest, complicating privacy management. It emphasizes the need for new regulatory approaches that go beyond current privacy legislation to effectively manage the risks associated with AI-driven data acquisition and processing. The paper suggests three key strategies to mitigate the privacy harms of AI: 1.) Denormalize Data Collection by Default: Shift from opt-out to opt-in data collection models to facilitate true data minimization. This approach emphasizes "privacy by default" and the need for technical standards and infrastructure that enable meaningful consent mechanisms. 2.) Focus on the AI Data Supply Chain: Enhance privacy and data protection by ensuring dataset transparency and accountability throughout the entire lifecycle of data. This includes a call for regulatory frameworks that address data privacy comprehensively across the data supply chain. 3.) Flip the Script on Personal Data Management: Encourage the development of new governance mechanisms and technical infrastructures, such as data intermediaries and data permissioning systems, to automate and support the exercise of individual data rights and preferences. This strategy aims to empower individuals by facilitating easier management and control of their personal data in the context of AI. by Dr. Jennifer King Caroline Meinhardt Link: https://lnkd.in/dniktn3V
How the Framework Affects Global Data Privacy
Explore top LinkedIn content from expert professionals.
Summary
The framework significantly influences global data privacy by addressing the challenges of modern technology like AI and cross-border data transfers. It highlights how existing regulations such as the GDPR and new frameworks like the EU-U.S. Data Privacy Framework aim to safeguard personal data, but also underscores the need for updated approaches to tackle emerging threats and privacy complexities brought by AI and global policy changes.
- Prioritize data governance: Develop comprehensive data management policies that align with the latest global privacy laws and enable organizations to manage data responsibly and transparently.
- Adopt regulatory frameworks: Leverage frameworks like GDPR, FIPs, or ISO standards to ensure accountability, fairness, and clarity in AI-driven data use while addressing privacy risks.
- Focus on user consent: Shift to privacy-first practices by implementing opt-in data collection, clear consent mechanisms, and empowering individuals with better control over their personal data.
-
-
✴ AI Governance Blueprint via ISO Standards – The 4-Legged Stool✴ ➡ ISO42001: The Foundation for Responsible AI #ISO42001 is dedicated to AI governance, guiding organizations in managing AI-specific risks like bias, transparency, and accountability. Focus areas include: ✅Risk Management: Defines processes for identifying and mitigating AI risks, ensuring systems are fair, robust, and ethically aligned. ✅Ethics and Transparency: Promotes policies that encourage transparency in AI operations, data usage, and decision-making. ✅Continuous Monitoring: Emphasizes ongoing improvement, adapting AI practices to address new risks and regulatory updates. ➡#ISO27001: Securing the Data Backbone AI relies heavily on data, making ISO27001’s information security framework essential. It protects data integrity through: ✅Data Confidentiality and Integrity: Ensures data protection, crucial for trustworthy AI operations. ✅Security Risk Management: Provides a systematic approach to managing security risks and preparing for potential breaches. ✅Business Continuity: Offers guidelines for incident response, ensuring AI systems remain reliable. ➡ISO27701: Privacy Assurance in AI #ISO27701 builds on ISO27001, adding a layer of privacy controls to protect personally identifiable information (PII) that AI systems may process. Key areas include: ✅Privacy Governance: Ensures AI systems handle PII responsibly, in compliance with privacy laws like GDPR. ✅Data Minimization and Protection: Establishes guidelines for minimizing PII exposure and enhancing privacy through data protection measures. ✅Transparency in Data Processing: Promotes clear communication about data collection, use, and consent, building trust in AI-driven services. ➡ISO37301: Building a Culture of Compliance #ISO37301 cultivates a compliance-focused culture, supporting AI’s ethical and legal responsibilities. Contributions include: ✅Compliance Obligations: Helps organizations meet current and future regulatory standards for AI. ✅Transparency and Accountability: Reinforces transparent reporting and adherence to ethical standards, building stakeholder trust. ✅Compliance Risk Assessment: Identifies legal or reputational risks AI systems might pose, enabling proactive mitigation. ➡Why This Quartet? Combining these standards establishes a comprehensive compliance framework: 🥇1. Unified Risk and Privacy Management: Integrates AI-specific risk (ISO42001), data security (ISO27001), and privacy (ISO27701) with compliance (ISO37301), creating a holistic approach to risk mitigation. 🥈 2. Cross-Functional Alignment: Encourages collaboration across AI, IT, and compliance teams, fostering a unified response to AI risks and privacy concerns. 🥉 3. Continuous Improvement: ISO42001’s ongoing improvement cycle, supported by ISO27001’s security measures, ISO27701’s privacy protocols, and ISO37301’s compliance adaptability, ensures the framework remains resilient and adaptable to emerging challenges.
-
The rapid advancement of AI technologies, particularly LLMs, has highlighted important questions about the application of privacy laws like the GDPR. As someone who has been grappling with this issue for years, I am *thrilled* to see the Hamburg DPC's discussion paper approach privacy risks and AI with a deep understanding of the technology. A few absolutely refreshing takeaways: ➡ LLMs process tokens and vectorial relationships between tokens (embeddings), fundamentally differing from conventional data storage and retrieval. The Hamburg DPC finds that LLMs don't "process" or "store" personal data within the meaning of the GDPR. ➡ Unlike traditional identifiers, tokens and their embeddings in LLMs lack the necessary direct, targeted association to individuals that characterizes personal data in CJEU jurisprudence. ➡ Memorization attacks that extract training data from an LLM don't necessarily conclude that personal data is stored in the LLM. These attacks may be practically disproportionate and potentially legally prohibited, making personal identification not "possible" under the legislation. ➡ Even if personal data was unlawfully processed in developing the LLM, it doesn't render the use of the resulting LLM illegal (providing downstream deployers some comfort when leveraging third-party models). This is a nuanced and technology-informed perspective on the complex intersection of AI and privacy. As we continue to navigate this rapidly evolving landscape, I hope we see more regulators and courts approach regulation and legal compliance with a deep understanding of how the technology actually works. #AI #Privacy #GDPR #LLM
-
I'm increasingly convinced that we need to treat "AI privacy" as a distinct field within privacy, separate from but closely related to "data privacy". Just as the digital age required the evolution of data protection laws, AI introduces new risks that challenge existing frameworks, forcing us to rethink how personal data is ingested and embedded into AI systems. Key issues include: 🔹 Mass-scale ingestion – AI models are often trained on huge datasets scraped from online sources, including publicly available and proprietary information, without individuals' consent. 🔹 Personal data embedding – Unlike traditional databases, AI models compress, encode, and entrench personal data within their training, blurring the lines between the data and the model. 🔹 Data exfiltration & exposure – AI models can inadvertently retain and expose sensitive personal data through overfitting, prompt injection attacks, or adversarial exploits. 🔹 Superinference – AI uncovers hidden patterns and makes powerful predictions about our preferences, behaviours, emotions, and opinions, often revealing insights that we ourselves may not even be aware of. 🔹 AI impersonation – Deepfake and generative AI technologies enable identity fraud, social engineering attacks, and unauthorized use of biometric data. 🔹 Autonomy & control – AI may be used to make or influence critical decisions in domains such as hiring, lending, and healthcare, raising fundamental concerns about autonomy and contestability. 🔹 Bias & fairness – AI can amplify biases present in training data, leading to discriminatory outcomes in areas such as employment, financial services, and law enforcement. To date, privacy discussions have focused on data - how it's collected, used, and stored. But AI challenges this paradigm. Data is no longer static. It is abstracted, transformed, and embedded into models in ways that challenge conventional privacy protections. If "AI privacy" is about more than just the data, should privacy rights extend beyond inputs and outputs to the models themselves? If a model learns from us, should we have rights over it? #AI #AIPrivacy #Dataprivacy #Dataprotection #AIrights #Digitalrights
-
🧠 “Data systems are designed to remember data, not to forget data.” – Debbie Reynolds, The Data Diva 🚨 I just published a new essay in the Data Privacy Advantage newsletter called: 🧬An AI Data Privacy Cautionary Tale: Court-Ordered Data Retention Meets Privacy🧬 🧠 This essay explores the recent court order from the United States District Court for the Southern District of New York in the New York Times v. OpenAI case. The court ordered OpenAI to preserve all user interactions, including chat logs, prompts, API traffic, and generated outputs, with no deletion allowed, not even at the user's request. 💥 That means: 💥“Delete” no longer means delete 💥API business users are not exempt 💥Personal, confidential, or proprietary data entered into ChatGPT could now be locked in indefinitely 💥Even if you never knew your data would be involved in litigation, it may now be preserved beyond your control 🏛️ This order overrides global privacy laws, such as the GDPR and CCPA, highlighting how litigation can erode deletion rights and intensify the risks associated with using generative AI tools. 🔍 In the essay, I cover: ✅ What the court order says and why it matters ✅ Why enterprise API users are directly affected ✅ How AI models retain data behind the scenes ✅ The conflict between privacy laws and legal hold obligations ✅ What businesses should do now to avoid exposure 💡 My recommendations include: • Train employees on what not to submit to AI • Curate all data inputs with legal oversight • Review vendor contracts for retention language • Establish internal policies for AI usage and audits • Require transparency from AI providers 🏢 If your organization is using generative AI, even in limited ways, now is the time to assess your data discipline. AI inputs are no longer just temporary interactions; they are potentially discoverable records. And now, courts are treating them that way. 📖 Read the full essay to understand why AI data privacy cannot be an afterthought. #Privacy #Cybersecurity #datadiva#DataPrivacy #AI #LegalRisk #LitigationHold #PrivacyByDesign #TheDataDiva #OpenAI #ChatGPT #Governance #Compliance #NYTvOpenAI #GenerativeAI #DataGovernance #PrivacyMatters
-
📸Meta’s request for camera roll access signals a critical inflection point in AI development—one that reveals the inadequacy of our current consent frameworks for both individuals and organizations. The core issue isn’t privacy alone. It’s the misalignment between how AI systems learn and how humans actually share. When we post a photo publicly, we’re making a deliberate choice—about context, audience, meaning. Camera roll access bypasses that intentionality entirely. Your unshared photos hold different signals: 📍 family moments 📍 screenshots of private conversations 📍 creative drafts 📍 work documents All of it becomes potential training data—without your explicit intent. For individuals, this shift creates three serious concerns: 1. Consent erosion — the boundary between “what I share” and “what gets analyzed” disappears 2. Context collapse — meaning is flattened when private data fuels generalized models 3. Invisible labor — your memories become unpaid inputs for commercial systems For organizations, the implications are just as pressing: 🔹 Data strategy: Companies must distinguish between available data and appropriate data. Consent isn’t binary—it’s contextual and evolving. 🔹 Long-term trust: The businesses that optimize for genuine user agency—not maximum data extraction—will be the ones that sustain real relationships and build better systems. Here’s a quick evaluation framework I use: ✅ Does this data improve the specific task the user requested? ✅ Could similar results be achieved with targeted, user-controlled input? ✅ Are we optimizing for system performance or user autonomy? The future of AI will be shaped by these choices. Not just what we can do with data—but what we choose to honor. We need systems that amplify human judgment, not bypass it. Design that aligns with consent, not convenience. The question isn’t just: can AI understand us? It’s: will it respect how we want to be understood? → How are you thinking about these trade-offs in your personal tech use? → And if you’re building AI—what frameworks are you using to balance capability with care? #AIethics #ConsentByDesign #RelationalAI #ResponsibleInnovation #MetaAI #DataGovernance #DigitalSovereignty #WeCareImpact
-
Exciting news! The European Commission has made an adequacy decision for the EU-U.S. Data Privacy Framework, which will have an impact on the current scenario of GDPR. The decision states that the United States ensures an adequate level of protection for personal data transferred from the EU to US companies participating in the EU-U.S. Data Privacy Framework. With this decision, personal data can flow freely and safely from the European Economic Area (EEA) to the US without additional conditions or authorizations. This means transfers to the US can be handled similarly to intra-EU data transmissions. US companies can participate in the framework by committing to privacy obligations, including principles like data minimization and purpose limitation, as well as obligations on data security and data sharing with third parties. The US Department of Commerce will administer the framework, processing applications for certification and monitoring compliance. Non-compliance will be enforced by the US Federal Trade Commission. Regarding access to data by US intelligence agencies, the adequacy decision takes into account the Executive Order on ‘Enhancing Safeguards for United States Signals Intelligence Activities.' This order includes binding safeguards to limit access to data for national security purposes, enhanced oversight of intelligence services, and the establishment of an independent redress mechanism through the Data Protection Review
-
Insightful Sunday read regarding AI governance and risk. This framework brings some much-needed structure to AI governance in national security, especially in sensitive areas like privacy, rights, and high-stakes decision-making. The sections on restricted uses of AI make it clear that AI should not replace human judgment, particularly in scenarios impacting civil liberties or public trust. This is particularly relevant for national security contexts where public trust is essential, yet easily eroded by perceived overreach or misuse. The emphasis on impact assessments and human oversight is both pragmatic and proactive. AI is powerful, but without proper guardrails, it’s easy for its application to stray into gray areas, particularly in national security. The framework’s call for thorough risk assessments, documented benefits, and mitigated risks is forward-thinking, aiming to balance AI’s utility with caution. Another strong point is the training requirement. AI can be a black box for many users, so the framework rightly mandates that users understand both the tools’ potential and limitations. This also aligns well with the rising concerns around “automation bias,” where users might overtrust AI simply because it’s “smart.” The creation of an oversight structure through CAIOs and Governance Boards shows a commitment to transparency and accountability. It might even serve as a model for non-security government agencies as they adopt AI, reinforcing responsible and ethical AI usage across the board. Key Points: AI Use Restrictions: Strict limits on certain AI applications, particularly those that could infringe on civil rights, civil liberties, or privacy. Specific prohibitions include tracking individuals based on protected rights, inferring sensitive personal attributes (e.g., religion, gender identity) from biometrics, and making high-stakes decisions like immigration status solely based on AI. High-Impact AI and Risk Management: AI that influences major decisions, particularly in national security and defense, must undergo rigorous testing, oversight, and impact assessment. Cataloguing and Monitoring: A yearly inventory of high-impact AI applications, including data on their purpose, benefits, and risks, is required. This step is about creating a transparent and accountable record of AI use, aimed at keeping all deployed systems in check and manageable. Training and Accountability: Agencies are tasked with ensuring personnel are trained to understand the AI tools they use, especially those in roles with significant decision-making power. Training focuses on preventing overreliance on AI, addressing biases, and understanding AI’s limitations. Oversight Structure: A Chief AI Officer (CAIO) is essential within each agency to oversee AI governance and promote responsible AI use. An AI Governance Board is also mandated to oversee all high-impact AI activities within each agency, keeping them aligned with the framework’s principles.
-
Understanding AI Compliance: Key Insights from the COMPL-AI Framework ⬇️ As AI models become increasingly embedded in daily life, ensuring they align with ethical and regulatory standards is critical. The COMPL-AI framework dives into how Large Language Models (LLMs) measure up to the EU’s AI Act, offering an in-depth look at AI compliance challenges. ✅ Ethical Standards: The framework translates the EU AI Act’s 6 ethical principles—robustness, privacy, transparency, fairness, safety, and environmental sustainability—into actionable criteria for evaluating AI models. ✅Model Evaluation: COMPL-AI benchmarks 12 major LLMs and identifies substantial gaps in areas like robustness and fairness, revealing that current models often prioritize capabilities over compliance. ✅Robustness & Fairness : Many LLMs show vulnerabilities in robustness and fairness, with significant risks of bias and performance issues under real-world conditions. ✅Privacy & Transparency Gaps: The study notes a lack of transparency and privacy safeguards in several models, highlighting concerns about data security and responsible handling of user information. ✅Path to Safer AI: COMPL-AI offers a roadmap to align LLMs with regulatory standards, encouraging development that not only enhances capabilities but also meets ethical and safety requirements. 𝐖𝐡𝐲 𝐢𝐬 𝐭𝐡𝐢𝐬 𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭? ➡️ The COMPL-AI framework is crucial because it provides a structured, measurable way to assess whether large language models (LLMs) meet the ethical and regulatory standards set by the EU’s AI Act which come in play in January of 2025. ➡️ As AI is increasingly used in critical areas like healthcare, finance, and public services, ensuring these systems are robust, fair, private, and transparent becomes essential for user trust and societal impact. COMPL-AI highlights existing gaps in compliance, such as biases and privacy concerns, and offers a roadmap for AI developers to address these issues. ➡️ By focusing on compliance, the framework not only promotes safer and more ethical AI but also helps align technology with legal standards, preparing companies for future regulations and supporting the development of trustworthy AI systems. How ready are we?
-
President Biden’s recent Executive Order on AI leaves one key issue open that remains top of mind for most organizations today – data privacy. The order calls Congress to pass “bipartisan data privacy legislation” to protect Americans’ data. As we embrace the power of AI, we must also recognize the morphing challenges of data privacy in the context of data sovereignty. The rules are constantly changing, and organizations need flexibility to maintain compliance just in their home countries but also in every country in which they operate. Governments worldwide, from the European Union with its GDPR to India's Personal Data Protection Bill, are setting stringent regulations to protect their citizens' data. The essence? Data about a nation's citizens or businesses should only reside on systems within their legal and regulatory purview. We all know AI is a game-changer but also a voracious consumer of data and a complicating factor for data sovereignty. Especially with Generative AI, which consumes data indiscriminately, often stored and processed at the AI companies' discretion. This collision between AI's insatiable appetite for data, the temptation for organizations to use it, and global data sovereignty regulations present a unique challenge for businesses. With the right approach, businesses can harness the power of AI while respecting data sovereignty. Here are a few ideas on how: Mindset: Make data sovereignty a company-wide priority. It's not just an IT or legal concern; it's a business imperative. Every team member should understand the risks associated with non-compliance. Inventory: Know your data. With large enterprises storing data in over 800 applications on average, it's crucial to maintain an inventory of your company's data and be aware of the vendors interacting with it. Governance: Stay updated with regional data laws and ensure compliance. Data sovereignty requires governance to be local also. Vendor Compliance: Your external vendors should be in lockstep with your data policies. Leverage Data Unification Solutions: Use flexible, scalable tools to ensure data sovereignty compliance. Data unification and management tools powered by AI can detect data leakages, trace data lineage, and ensure data remains within stipulated borders. I’ve witnessed how this can be accomplished in many industries, including healthcare. Despite stringent privacy and sovereignty policies, many healthcare management systems demonstrate that robust data management, compliant with regulations, is achievable. The key is designing systems with data management policies from the outset. To all global organizations: Embrace the future, but let's do it responsibly. Data privacy and sovereignty are not a hurdle; it's a responsibility we must uphold for the trust of our customers and the integrity of our businesses. Planning for inevitable changes now will pay dividends in the future. #data