AI is not failing because of bad ideas; it’s "failing" at enterprise scale because of two big gaps: 👉 Workforce Preparation 👉 Data Security for AI While I speak globally on both topics in depth, today I want to educate us on what it takes to secure data for AI—because 70–82% of AI projects pause or get cancelled at POC/MVP stage (source: #Gartner, #MIT). Why? One of the biggest reasons is a lack of readiness at the data layer. So let’s make it simple - there are 7 phases to securing data for AI—and each phase has direct business risk if ignored. 🔹 Phase 1: Data Sourcing Security - Validating the origin, ownership, and licensing rights of all ingested data. Why It Matters: You can’t build scalable AI with data you don’t own or can’t trace. 🔹 Phase 2: Data Infrastructure Security - Ensuring data warehouses, lakes, and pipelines that support your AI models are hardened and access-controlled. Why It Matters: Unsecured data environments are easy targets for bad actors making you exposed to data breaches, IP theft, and model poisoning. 🔹 Phase 3: Data In-Transit Security - Protecting data as it moves across internal or external systems, especially between cloud, APIs, and vendors. Why It Matters: Intercepted training data = compromised models. Think of it as shipping cash across town in an armored truck—or on a bicycle—your choice. 🔹 Phase 4: API Security for Foundational Models - Safeguarding the APIs you use to connect with LLMs and third-party GenAI platforms (OpenAI, Anthropic, etc.). Why It Matters: Unmonitored API calls can leak sensitive data into public models or expose internal IP. This isn’t just tech debt. It’s reputational and regulatory risk. 🔹 Phase 5: Foundational Model Protection - Defending your proprietary models and fine-tunes from external inference, theft, or malicious querying. Why It Matters: Prompt injection attacks are real. And your enterprise-trained model? It’s a business asset. You lock your office at night—do the same with your models. 🔹 Phase 6: Incident Response for AI Data Breaches - Having predefined protocols for breaches, hallucinations, or AI-generated harm—who’s notified, who investigates, how damage is mitigated. Why It Matters: AI-related incidents are happening. Legal needs response plans. Cyber needs escalation tiers. 🔹 Phase 7: CI/CD for Models (with Security Hooks) - Continuous integration and delivery pipelines for models, embedded with testing, governance, and version-control protocols. Why It Matter: Shipping models like software means risk comes faster—and so must detection. Governance must be baked into every deployment sprint. Want your AI strategy to succeed past MVP? Focus and lock down the data. #AI #DataSecurity #AILeadership #Cybersecurity #FutureOfWork #ResponsibleAI #SolRashidi #Data #Leadership
How to Use AI to Protect Private Data
Explore top LinkedIn content from expert professionals.
Summary
Using AI to protect private data involves leveraging artificial intelligence to secure sensitive information, ensure compliance with privacy regulations, and prevent malicious access. This approach includes safeguarding data throughout its lifecycle, from sourcing to usage and potential breaches.
- Understand data risks: Identify and classify sensitive data accurately, such as personal or confidential information, and assess applicable privacy regulations like GDPR or CCPA.
- Secure data processes: Protect data in transit, at rest, and during processing with encryption, access controls, and privacy-preserving techniques like anonymization or differential privacy.
- Adopt ongoing safeguards: Regularly audit data security practices, update privacy protocols, and deploy incident response plans to address breaches or AI-related risks proactively.
-
-
How To Handle Sensitive Information in your next AI Project It's crucial to handle sensitive user information with care. Whether it's personal data, financial details, or health information, understanding how to protect and manage it is essential to maintain trust and comply with privacy regulations. Here are 5 best practices to follow: 1. Identify and Classify Sensitive Data Start by identifying the types of sensitive data your application handles, such as personally identifiable information (PII), sensitive personal information (SPI), and confidential data. Understand the specific legal requirements and privacy regulations that apply, such as GDPR or the California Consumer Privacy Act. 2. Minimize Data Exposure Only share the necessary information with AI endpoints. For PII, such as names, addresses, or social security numbers, consider redacting this information before making API calls, especially if the data could be linked to sensitive applications, like healthcare or financial services. 3. Avoid Sharing Highly Sensitive Information Never pass sensitive personal information, such as credit card numbers, passwords, or bank account details, through AI endpoints. Instead, use secure, dedicated channels for handling and processing such data to avoid unintended exposure or misuse. 4. Implement Data Anonymization When dealing with confidential information, like health conditions or legal matters, ensure that the data cannot be traced back to an individual. Anonymize the data before using it with AI services to maintain user privacy and comply with legal standards. 5. Regularly Review and Update Privacy Practices Data privacy is a dynamic field with evolving laws and best practices. To ensure continued compliance and protection of user data, regularly review your data handling processes, stay updated on relevant regulations, and adjust your practices as needed. Remember, safeguarding sensitive information is not just about compliance — it's about earning and keeping the trust of your users.
-
The Cybersecurity and Infrastructure Security Agency together with the National Security Agency, the Federal Bureau of Investigation (FBI), the National Cyber Security Centre, and other international organizations, published this advisory providing recommendations for organizations in how to protect the integrity, confidentiality, and availability of the data used to train and operate #artificialintelligence. The advisory focuses on three main risk areas: 1. Data #supplychain threats: Including compromised third-party data, poisoning of datasets, and lack of provenance verification. 2. Maliciously modified data: Covering adversarial #machinelearning, statistical bias, metadata manipulation, and unauthorized duplication. 3. Data drift: The gradual degradation of model performance due to changes in real-world data inputs over time. The best practices recommended include: - Tracking data provenance and applying cryptographic controls such as digital signatures and secure hashes. - Encrypting data at rest, in transit, and during processing—especially sensitive or mission-critical information. - Implementing strict access controls and classification protocols based on data sensitivity. - Applying privacy-preserving techniques such as data masking, differential #privacy, and federated learning. - Regularly auditing datasets and metadata, conducting anomaly detection, and mitigating statistical bias. - Securely deleting obsolete data and continuously assessing #datasecurity risks. This is a helpful roadmap for any organization deploying #AI, especially those working with limited internal resources or relying on third-party data.