PostgreSQL Source Code git master
execParallel.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * execParallel.c
4 * Support routines for parallel execution.
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 * This file contains routines that are intended to support setting up,
10 * using, and tearing down a ParallelContext from within the PostgreSQL
11 * executor. The ParallelContext machinery will handle starting the
12 * workers and ensuring that their state generally matches that of the
13 * leader; see src/backend/access/transam/README.parallel for details.
14 * However, we must save and restore relevant executor state, such as
15 * any ParamListInfo associated with the query, buffer/WAL usage info, and
16 * the actual plan to be passed down to the worker.
17 *
18 * IDENTIFICATION
19 * src/backend/executor/execParallel.c
20 *
21 *-------------------------------------------------------------------------
22 */
23
24#include "postgres.h"
25
27#include "executor/executor.h"
28#include "executor/nodeAgg.h"
29#include "executor/nodeAppend.h"
32#include "executor/nodeCustom.h"
34#include "executor/nodeHash.h"
41#include "executor/nodeSort.h"
44#include "executor/tqueue.h"
45#include "jit/jit.h"
46#include "nodes/nodeFuncs.h"
47#include "pgstat.h"
48#include "tcop/tcopprot.h"
49#include "utils/datum.h"
50#include "utils/dsa.h"
51#include "utils/lsyscache.h"
52#include "utils/snapmgr.h"
53
54/*
55 * Magic numbers for parallel executor communication. We use constants
56 * greater than any 32-bit integer here so that values < 2^32 can be used
57 * by individual parallel nodes to store their own state.
58 */
59#define PARALLEL_KEY_EXECUTOR_FIXED UINT64CONST(0xE000000000000001)
60#define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000002)
61#define PARALLEL_KEY_PARAMLISTINFO UINT64CONST(0xE000000000000003)
62#define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000004)
63#define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000005)
64#define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000006)
65#define PARALLEL_KEY_DSA UINT64CONST(0xE000000000000007)
66#define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xE000000000000008)
67#define PARALLEL_KEY_JIT_INSTRUMENTATION UINT64CONST(0xE000000000000009)
68#define PARALLEL_KEY_WAL_USAGE UINT64CONST(0xE00000000000000A)
69
70#define PARALLEL_TUPLE_QUEUE_SIZE 65536
71
72/*
73 * Fixed-size random stuff that we need to pass to parallel workers.
74 */
76{
77 int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */
79 int eflags;
82
83/*
84 * DSM structure for accumulating per-PlanState instrumentation.
85 *
86 * instrument_options: Same meaning here as in instrument.c.
87 *
88 * instrument_offset: Offset, relative to the start of this structure,
89 * of the first Instrumentation object. This will depend on the length of
90 * the plan_node_id array.
91 *
92 * num_workers: Number of workers.
93 *
94 * num_plan_nodes: Number of plan nodes.
95 *
96 * plan_node_id: Array of plan nodes for which we are gathering instrumentation
97 * from parallel workers. The length of this array is given by num_plan_nodes.
98 */
100{
106 /* array of num_plan_nodes * num_workers Instrumentation objects follows */
107};
108#define GetInstrumentationArray(sei) \
109 (AssertVariableIsOfTypeMacro(sei, SharedExecutorInstrumentation *), \
110 (Instrumentation *) (((char *) sei) + sei->instrument_offset))
111
112/* Context object for ExecParallelEstimate. */
114{
118
119/* Context object for ExecParallelInitializeDSM. */
121{
126
127/* Helper functions that run in the parallel leader. */
128static char *ExecSerializePlan(Plan *plan, EState *estate);
129static bool ExecParallelEstimate(PlanState *planstate,
131static bool ExecParallelInitializeDSM(PlanState *planstate,
134 bool reinitialize);
135static bool ExecParallelReInitializeDSM(PlanState *planstate,
136 ParallelContext *pcxt);
138 SharedExecutorInstrumentation *instrumentation);
139
140/* Helper function that runs in the parallel worker. */
142
143/*
144 * Create a serialized representation of the plan to be sent to each worker.
145 */
146static char *
148{
149 PlannedStmt *pstmt;
150 ListCell *lc;
151
152 /* We can't scribble on the original plan, so make a copy. */
154
155 /*
156 * The worker will start its own copy of the executor, and that copy will
157 * insert a junk filter if the toplevel node has any resjunk entries. We
158 * don't want that to happen, because while resjunk columns shouldn't be
159 * sent back to the user, here the tuples are coming back to another
160 * backend which may very well need them. So mutate the target list
161 * accordingly. This is sort of a hack; there might be better ways to do
162 * this...
163 */
164 foreach(lc, plan->targetlist)
165 {
167
168 tle->resjunk = false;
169 }
170
171 /*
172 * Create a dummy PlannedStmt. Most of the fields don't need to be valid
173 * for our purposes, but the worker will need at least a minimal
174 * PlannedStmt to start the executor.
175 */
176 pstmt = makeNode(PlannedStmt);
177 pstmt->commandType = CMD_SELECT;
179 pstmt->planId = pgstat_get_my_plan_id();
180 pstmt->hasReturning = false;
181 pstmt->hasModifyingCTE = false;
182 pstmt->canSetTag = true;
183 pstmt->transientPlan = false;
184 pstmt->dependsOnRole = false;
185 pstmt->parallelModeNeeded = false;
186 pstmt->planTree = plan;
187 pstmt->partPruneInfos = estate->es_part_prune_infos;
188 pstmt->rtable = estate->es_range_table;
189 pstmt->unprunableRelids = estate->es_unpruned_relids;
190 pstmt->permInfos = estate->es_rteperminfos;
191 pstmt->resultRelations = NIL;
192 pstmt->appendRelations = NIL;
194
195 /*
196 * Transfer only parallel-safe subplans, leaving a NULL "hole" in the list
197 * for unsafe ones (so that the list indexes of the safe ones are
198 * preserved). This positively ensures that the worker won't try to run,
199 * or even do ExecInitNode on, an unsafe subplan. That's important to
200 * protect, eg, non-parallel-aware FDWs from getting into trouble.
201 */
202 pstmt->subplans = NIL;
203 foreach(lc, estate->es_plannedstmt->subplans)
204 {
205 Plan *subplan = (Plan *) lfirst(lc);
206
207 if (subplan && !subplan->parallel_safe)
208 subplan = NULL;
209 pstmt->subplans = lappend(pstmt->subplans, subplan);
210 }
211
212 pstmt->rewindPlanIDs = NULL;
213 pstmt->rowMarks = NIL;
214 pstmt->relationOids = NIL;
215 pstmt->invalItems = NIL; /* workers can't replan anyway... */
217 pstmt->utilityStmt = NULL;
218 pstmt->stmt_location = -1;
219 pstmt->stmt_len = -1;
220
221 /* Return serialized copy of our dummy PlannedStmt. */
222 return nodeToString(pstmt);
223}
224
225/*
226 * Parallel-aware plan nodes (and occasionally others) may need some state
227 * which is shared across all parallel workers. Before we size the DSM, give
228 * them a chance to call shm_toc_estimate_chunk or shm_toc_estimate_keys on
229 * &pcxt->estimator.
230 *
231 * While we're at it, count the number of PlanState nodes in the tree, so
232 * we know how many Instrumentation structures we need.
233 */
234static bool
236{
237 if (planstate == NULL)
238 return false;
239
240 /* Count this node. */
241 e->nnodes++;
242
243 switch (nodeTag(planstate))
244 {
245 case T_SeqScanState:
246 if (planstate->plan->parallel_aware)
247 ExecSeqScanEstimate((SeqScanState *) planstate,
248 e->pcxt);
249 break;
250 case T_IndexScanState:
251 /* even when not parallel-aware, for EXPLAIN ANALYZE */
253 e->pcxt);
254 break;
255 case T_IndexOnlyScanState:
256 /* even when not parallel-aware, for EXPLAIN ANALYZE */
258 e->pcxt);
259 break;
260 case T_BitmapIndexScanState:
261 /* even when not parallel-aware, for EXPLAIN ANALYZE */
263 e->pcxt);
264 break;
265 case T_ForeignScanState:
266 if (planstate->plan->parallel_aware)
268 e->pcxt);
269 break;
270 case T_TidRangeScanState:
271 if (planstate->plan->parallel_aware)
273 e->pcxt);
274 break;
275 case T_AppendState:
276 if (planstate->plan->parallel_aware)
277 ExecAppendEstimate((AppendState *) planstate,
278 e->pcxt);
279 break;
280 case T_CustomScanState:
281 if (planstate->plan->parallel_aware)
283 e->pcxt);
284 break;
285 case T_BitmapHeapScanState:
286 if (planstate->plan->parallel_aware)
288 e->pcxt);
289 break;
290 case T_HashJoinState:
291 if (planstate->plan->parallel_aware)
293 e->pcxt);
294 break;
295 case T_HashState:
296 /* even when not parallel-aware, for EXPLAIN ANALYZE */
297 ExecHashEstimate((HashState *) planstate, e->pcxt);
298 break;
299 case T_SortState:
300 /* even when not parallel-aware, for EXPLAIN ANALYZE */
301 ExecSortEstimate((SortState *) planstate, e->pcxt);
302 break;
303 case T_IncrementalSortState:
304 /* even when not parallel-aware, for EXPLAIN ANALYZE */
306 break;
307 case T_AggState:
308 /* even when not parallel-aware, for EXPLAIN ANALYZE */
309 ExecAggEstimate((AggState *) planstate, e->pcxt);
310 break;
311 case T_MemoizeState:
312 /* even when not parallel-aware, for EXPLAIN ANALYZE */
313 ExecMemoizeEstimate((MemoizeState *) planstate, e->pcxt);
314 break;
315 default:
316 break;
317 }
318
319 return planstate_tree_walker(planstate, ExecParallelEstimate, e);
320}
321
322/*
323 * Estimate the amount of space required to serialize the indicated parameters.
324 */
325static Size
327{
328 int paramid;
329 Size sz = sizeof(int);
330
331 paramid = -1;
332 while ((paramid = bms_next_member(params, paramid)) >= 0)
333 {
334 Oid typeOid;
335 int16 typLen;
336 bool typByVal;
337 ParamExecData *prm;
338
339 prm = &(estate->es_param_exec_vals[paramid]);
340 typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes,
341 paramid);
342
343 sz = add_size(sz, sizeof(int)); /* space for paramid */
344
345 /* space for datum/isnull */
346 if (OidIsValid(typeOid))
347 get_typlenbyval(typeOid, &typLen, &typByVal);
348 else
349 {
350 /* If no type OID, assume by-value, like copyParamList does. */
351 typLen = sizeof(Datum);
352 typByVal = true;
353 }
354 sz = add_size(sz,
356 typByVal, typLen));
357 }
358 return sz;
359}
360
361/*
362 * Serialize specified PARAM_EXEC parameters.
363 *
364 * We write the number of parameters first, as a 4-byte integer, and then
365 * write details for each parameter in turn. The details for each parameter
366 * consist of a 4-byte paramid (location of param in execution time internal
367 * parameter array) and then the datum as serialized by datumSerialize().
368 */
369static dsa_pointer
371{
372 Size size;
373 int nparams;
374 int paramid;
375 ParamExecData *prm;
376 dsa_pointer handle;
377 char *start_address;
378
379 /* Allocate enough space for the current parameter values. */
380 size = EstimateParamExecSpace(estate, params);
381 handle = dsa_allocate(area, size);
382 start_address = dsa_get_address(area, handle);
383
384 /* First write the number of parameters as a 4-byte integer. */
385 nparams = bms_num_members(params);
386 memcpy(start_address, &nparams, sizeof(int));
387 start_address += sizeof(int);
388
389 /* Write details for each parameter in turn. */
390 paramid = -1;
391 while ((paramid = bms_next_member(params, paramid)) >= 0)
392 {
393 Oid typeOid;
394 int16 typLen;
395 bool typByVal;
396
397 prm = &(estate->es_param_exec_vals[paramid]);
398 typeOid = list_nth_oid(estate->es_plannedstmt->paramExecTypes,
399 paramid);
400
401 /* Write paramid. */
402 memcpy(start_address, &paramid, sizeof(int));
403 start_address += sizeof(int);
404
405 /* Write datum/isnull */
406 if (OidIsValid(typeOid))
407 get_typlenbyval(typeOid, &typLen, &typByVal);
408 else
409 {
410 /* If no type OID, assume by-value, like copyParamList does. */
411 typLen = sizeof(Datum);
412 typByVal = true;
413 }
414 datumSerialize(prm->value, prm->isnull, typByVal, typLen,
415 &start_address);
416 }
417
418 return handle;
419}
420
421/*
422 * Restore specified PARAM_EXEC parameters.
423 */
424static void
425RestoreParamExecParams(char *start_address, EState *estate)
426{
427 int nparams;
428 int i;
429 int paramid;
430
431 memcpy(&nparams, start_address, sizeof(int));
432 start_address += sizeof(int);
433
434 for (i = 0; i < nparams; i++)
435 {
436 ParamExecData *prm;
437
438 /* Read paramid */
439 memcpy(&paramid, start_address, sizeof(int));
440 start_address += sizeof(int);
441 prm = &(estate->es_param_exec_vals[paramid]);
442
443 /* Read datum/isnull. */
444 prm->value = datumRestore(&start_address, &prm->isnull);
445 prm->execPlan = NULL;
446 }
447}
448
449/*
450 * Initialize the dynamic shared memory segment that will be used to control
451 * parallel execution.
452 */
453static bool
456{
457 if (planstate == NULL)
458 return false;
459
460 /* If instrumentation is enabled, initialize slot for this node. */
461 if (d->instrumentation != NULL)
463 planstate->plan->plan_node_id;
464
465 /* Count this node. */
466 d->nnodes++;
467
468 /*
469 * Call initializers for DSM-using plan nodes.
470 *
471 * Most plan nodes won't do anything here, but plan nodes that allocated
472 * DSM may need to initialize shared state in the DSM before parallel
473 * workers are launched. They can allocate the space they previously
474 * estimated using shm_toc_allocate, and add the keys they previously
475 * estimated using shm_toc_insert, in each case targeting pcxt->toc.
476 */
477 switch (nodeTag(planstate))
478 {
479 case T_SeqScanState:
480 if (planstate->plan->parallel_aware)
482 d->pcxt);
483 break;
484 case T_IndexScanState:
485 /* even when not parallel-aware, for EXPLAIN ANALYZE */
487 break;
488 case T_IndexOnlyScanState:
489 /* even when not parallel-aware, for EXPLAIN ANALYZE */
491 d->pcxt);
492 break;
493 case T_BitmapIndexScanState:
494 /* even when not parallel-aware, for EXPLAIN ANALYZE */
496 break;
497 case T_ForeignScanState:
498 if (planstate->plan->parallel_aware)
500 d->pcxt);
501 break;
502 case T_TidRangeScanState:
503 if (planstate->plan->parallel_aware)
505 d->pcxt);
506 break;
507 case T_AppendState:
508 if (planstate->plan->parallel_aware)
510 d->pcxt);
511 break;
512 case T_CustomScanState:
513 if (planstate->plan->parallel_aware)
515 d->pcxt);
516 break;
517 case T_BitmapHeapScanState:
518 if (planstate->plan->parallel_aware)
520 d->pcxt);
521 break;
522 case T_HashJoinState:
523 if (planstate->plan->parallel_aware)
525 d->pcxt);
526 break;
527 case T_HashState:
528 /* even when not parallel-aware, for EXPLAIN ANALYZE */
529 ExecHashInitializeDSM((HashState *) planstate, d->pcxt);
530 break;
531 case T_SortState:
532 /* even when not parallel-aware, for EXPLAIN ANALYZE */
533 ExecSortInitializeDSM((SortState *) planstate, d->pcxt);
534 break;
535 case T_IncrementalSortState:
536 /* even when not parallel-aware, for EXPLAIN ANALYZE */
538 break;
539 case T_AggState:
540 /* even when not parallel-aware, for EXPLAIN ANALYZE */
541 ExecAggInitializeDSM((AggState *) planstate, d->pcxt);
542 break;
543 case T_MemoizeState:
544 /* even when not parallel-aware, for EXPLAIN ANALYZE */
545 ExecMemoizeInitializeDSM((MemoizeState *) planstate, d->pcxt);
546 break;
547 default:
548 break;
549 }
550
552}
553
554/*
555 * It sets up the response queues for backend workers to return tuples
556 * to the main backend and start the workers.
557 */
558static shm_mq_handle **
560{
561 shm_mq_handle **responseq;
562 char *tqueuespace;
563 int i;
564
565 /* Skip this if no workers. */
566 if (pcxt->nworkers == 0)
567 return NULL;
568
569 /* Allocate memory for shared memory queue handles. */
570 responseq = (shm_mq_handle **)
571 palloc(pcxt->nworkers * sizeof(shm_mq_handle *));
572
573 /*
574 * If not reinitializing, allocate space from the DSM for the queues;
575 * otherwise, find the already allocated space.
576 */
577 if (!reinitialize)
578 tqueuespace =
579 shm_toc_allocate(pcxt->toc,
581 pcxt->nworkers));
582 else
583 tqueuespace = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, false);
584
585 /* Create the queues, and become the receiver for each. */
586 for (i = 0; i < pcxt->nworkers; ++i)
587 {
588 shm_mq *mq;
589
590 mq = shm_mq_create(tqueuespace +
593
595 responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL);
596 }
597
598 /* Add array of queues to shm_toc, so others can find it. */
599 if (!reinitialize)
600 shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace);
601
602 /* Return array of handles. */
603 return responseq;
604}
605
606/*
607 * Sets up the required infrastructure for backend workers to perform
608 * execution and return results to the main backend.
609 */
612 Bitmapset *sendParams, int nworkers,
613 int64 tuples_needed)
614{
616 ParallelContext *pcxt;
620 char *pstmt_data;
621 char *pstmt_space;
622 char *paramlistinfo_space;
623 BufferUsage *bufusage_space;
624 WalUsage *walusage_space;
625 SharedExecutorInstrumentation *instrumentation = NULL;
626 SharedJitInstrumentation *jit_instrumentation = NULL;
627 int pstmt_len;
628 int paramlistinfo_len;
629 int instrumentation_len = 0;
630 int jit_instrumentation_len = 0;
631 int instrument_offset = 0;
632 Size dsa_minsize = dsa_minimum_size();
633 char *query_string;
634 int query_len;
635
636 /*
637 * Force any initplan outputs that we're going to pass to workers to be
638 * evaluated, if they weren't already.
639 *
640 * For simplicity, we use the EState's per-output-tuple ExprContext here.
641 * That risks intra-query memory leakage, since we might pass through here
642 * many times before that ExprContext gets reset; but ExecSetParamPlan
643 * doesn't normally leak any memory in the context (see its comments), so
644 * it doesn't seem worth complicating this function's API to pass it a
645 * shorter-lived ExprContext. This might need to change someday.
646 */
648
649 /* Allocate object for return value. */
650 pei = palloc0(sizeof(ParallelExecutorInfo));
651 pei->finished = false;
652 pei->planstate = planstate;
653
654 /* Fix up and serialize plan to be sent to workers. */
655 pstmt_data = ExecSerializePlan(planstate->plan, estate);
656
657 /* Create a parallel context. */
658 pcxt = CreateParallelContext("postgres", "ParallelQueryMain", nworkers);
659 pei->pcxt = pcxt;
660
661 /*
662 * Before telling the parallel context to create a dynamic shared memory
663 * segment, we need to figure out how big it should be. Estimate space
664 * for the various things we need to store.
665 */
666
667 /* Estimate space for fixed-size state. */
671
672 /* Estimate space for query text. */
673 query_len = strlen(estate->es_sourceText);
674 shm_toc_estimate_chunk(&pcxt->estimator, query_len + 1);
676
677 /* Estimate space for serialized PlannedStmt. */
678 pstmt_len = strlen(pstmt_data) + 1;
679 shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len);
681
682 /* Estimate space for serialized ParamListInfo. */
683 paramlistinfo_len = EstimateParamListSpace(estate->es_param_list_info);
684 shm_toc_estimate_chunk(&pcxt->estimator, paramlistinfo_len);
686
687 /*
688 * Estimate space for BufferUsage.
689 *
690 * If EXPLAIN is not in use and there are no extensions loaded that care,
691 * we could skip this. But we have no way of knowing whether anyone's
692 * looking at pgBufferUsage, so do it unconditionally.
693 */
695 mul_size(sizeof(BufferUsage), pcxt->nworkers));
697
698 /*
699 * Same thing for WalUsage.
700 */
702 mul_size(sizeof(WalUsage), pcxt->nworkers));
704
705 /* Estimate space for tuple queues. */
709
710 /*
711 * Give parallel-aware nodes a chance to add to the estimates, and get a
712 * count of how many PlanState nodes there are.
713 */
714 e.pcxt = pcxt;
715 e.nnodes = 0;
716 ExecParallelEstimate(planstate, &e);
717
718 /* Estimate space for instrumentation, if required. */
719 if (estate->es_instrument)
720 {
721 instrumentation_len =
722 offsetof(SharedExecutorInstrumentation, plan_node_id) +
723 sizeof(int) * e.nnodes;
724 instrumentation_len = MAXALIGN(instrumentation_len);
725 instrument_offset = instrumentation_len;
726 instrumentation_len +=
728 mul_size(e.nnodes, nworkers));
729 shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len);
731
732 /* Estimate space for JIT instrumentation, if required. */
733 if (estate->es_jit_flags != PGJIT_NONE)
734 {
735 jit_instrumentation_len =
736 offsetof(SharedJitInstrumentation, jit_instr) +
737 sizeof(JitInstrumentation) * nworkers;
738 shm_toc_estimate_chunk(&pcxt->estimator, jit_instrumentation_len);
740 }
741 }
742
743 /* Estimate space for DSA area. */
744 shm_toc_estimate_chunk(&pcxt->estimator, dsa_minsize);
746
747 /*
748 * InitializeParallelDSM() passes the active snapshot to the parallel
749 * worker, which uses it to set es_snapshot. Make sure we don't set
750 * es_snapshot differently in the child.
751 */
753
754 /* Everyone's had a chance to ask for space, so now create the DSM. */
756
757 /*
758 * OK, now we have a dynamic shared memory segment, and it should be big
759 * enough to store all of the data we estimated we would want to put into
760 * it, plus whatever general stuff (not specifically executor-related) the
761 * ParallelContext itself needs to store there. None of the space we
762 * asked for has been allocated or initialized yet, though, so do that.
763 */
764
765 /* Store fixed-size state. */
766 fpes = shm_toc_allocate(pcxt->toc, sizeof(FixedParallelExecutorState));
767 fpes->tuples_needed = tuples_needed;
769 fpes->eflags = estate->es_top_eflags;
770 fpes->jit_flags = estate->es_jit_flags;
772
773 /* Store query string */
774 query_string = shm_toc_allocate(pcxt->toc, query_len + 1);
775 memcpy(query_string, estate->es_sourceText, query_len + 1);
776 shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, query_string);
777
778 /* Store serialized PlannedStmt. */
779 pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len);
780 memcpy(pstmt_space, pstmt_data, pstmt_len);
781 shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space);
782
783 /* Store serialized ParamListInfo. */
784 paramlistinfo_space = shm_toc_allocate(pcxt->toc, paramlistinfo_len);
785 shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMLISTINFO, paramlistinfo_space);
786 SerializeParamList(estate->es_param_list_info, &paramlistinfo_space);
787
788 /* Allocate space for each worker's BufferUsage; no need to initialize. */
789 bufusage_space = shm_toc_allocate(pcxt->toc,
790 mul_size(sizeof(BufferUsage), pcxt->nworkers));
791 shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space);
792 pei->buffer_usage = bufusage_space;
793
794 /* Same for WalUsage. */
795 walusage_space = shm_toc_allocate(pcxt->toc,
796 mul_size(sizeof(WalUsage), pcxt->nworkers));
797 shm_toc_insert(pcxt->toc, PARALLEL_KEY_WAL_USAGE, walusage_space);
798 pei->wal_usage = walusage_space;
799
800 /* Set up the tuple queues that the workers will write into. */
801 pei->tqueue = ExecParallelSetupTupleQueues(pcxt, false);
802
803 /* We don't need the TupleQueueReaders yet, though. */
804 pei->reader = NULL;
805
806 /*
807 * If instrumentation options were supplied, allocate space for the data.
808 * It only gets partially initialized here; the rest happens during
809 * ExecParallelInitializeDSM.
810 */
811 if (estate->es_instrument)
812 {
813 Instrumentation *instrument;
814 int i;
815
816 instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len);
817 instrumentation->instrument_options = estate->es_instrument;
818 instrumentation->instrument_offset = instrument_offset;
819 instrumentation->num_workers = nworkers;
820 instrumentation->num_plan_nodes = e.nnodes;
821 instrument = GetInstrumentationArray(instrumentation);
822 for (i = 0; i < nworkers * e.nnodes; ++i)
823 InstrInit(&instrument[i], estate->es_instrument);
825 instrumentation);
826 pei->instrumentation = instrumentation;
827
828 if (estate->es_jit_flags != PGJIT_NONE)
829 {
830 jit_instrumentation = shm_toc_allocate(pcxt->toc,
831 jit_instrumentation_len);
832 jit_instrumentation->num_workers = nworkers;
833 memset(jit_instrumentation->jit_instr, 0,
834 sizeof(JitInstrumentation) * nworkers);
836 jit_instrumentation);
837 pei->jit_instrumentation = jit_instrumentation;
838 }
839 }
840
841 /*
842 * Create a DSA area that can be used by the leader and all workers.
843 * (However, if we failed to create a DSM and are using private memory
844 * instead, then skip this.)
845 */
846 if (pcxt->seg != NULL)
847 {
848 char *area_space;
849
850 area_space = shm_toc_allocate(pcxt->toc, dsa_minsize);
851 shm_toc_insert(pcxt->toc, PARALLEL_KEY_DSA, area_space);
852 pei->area = dsa_create_in_place(area_space, dsa_minsize,
853 LWTRANCHE_PARALLEL_QUERY_DSA,
854 pcxt->seg);
855
856 /*
857 * Serialize parameters, if any, using DSA storage. We don't dare use
858 * the main parallel query DSM for this because we might relaunch
859 * workers after the values have changed (and thus the amount of
860 * storage required has changed).
861 */
862 if (!bms_is_empty(sendParams))
863 {
864 pei->param_exec = SerializeParamExecParams(estate, sendParams,
865 pei->area);
866 fpes->param_exec = pei->param_exec;
867 }
868 }
869
870 /*
871 * Give parallel-aware nodes a chance to initialize their shared data.
872 * This also initializes the elements of instrumentation->ps_instrument,
873 * if it exists.
874 */
875 d.pcxt = pcxt;
876 d.instrumentation = instrumentation;
877 d.nnodes = 0;
878
879 /* Install our DSA area while initializing the plan. */
880 estate->es_query_dsa = pei->area;
881 ExecParallelInitializeDSM(planstate, &d);
882 estate->es_query_dsa = NULL;
883
884 /*
885 * Make sure that the world hasn't shifted under our feet. This could
886 * probably just be an Assert(), but let's be conservative for now.
887 */
888 if (e.nnodes != d.nnodes)
889 elog(ERROR, "inconsistent count of PlanState nodes");
890
891 /* OK, we're ready to rock and roll. */
892 return pei;
893}
894
895/*
896 * Set up tuple queue readers to read the results of a parallel subplan.
897 *
898 * This is separate from ExecInitParallelPlan() because we can launch the
899 * worker processes and let them start doing something before we do this.
900 */
901void
903{
904 int nworkers = pei->pcxt->nworkers_launched;
905 int i;
906
907 Assert(pei->reader == NULL);
908
909 if (nworkers > 0)
910 {
911 pei->reader = (TupleQueueReader **)
912 palloc(nworkers * sizeof(TupleQueueReader *));
913
914 for (i = 0; i < nworkers; i++)
915 {
917 pei->pcxt->worker[i].bgwhandle);
918 pei->reader[i] = CreateTupleQueueReader(pei->tqueue[i]);
919 }
920 }
921}
922
923/*
924 * Re-initialize the parallel executor shared memory state before launching
925 * a fresh batch of workers.
926 */
927void
930 Bitmapset *sendParams)
931{
932 EState *estate = planstate->state;
934
935 /* Old workers must already be shut down */
936 Assert(pei->finished);
937
938 /*
939 * Force any initplan outputs that we're going to pass to workers to be
940 * evaluated, if they weren't already (see comments in
941 * ExecInitParallelPlan).
942 */
944
946 pei->tqueue = ExecParallelSetupTupleQueues(pei->pcxt, true);
947 pei->reader = NULL;
948 pei->finished = false;
949
951
952 /* Free any serialized parameters from the last round. */
953 if (DsaPointerIsValid(fpes->param_exec))
954 {
955 dsa_free(pei->area, fpes->param_exec);
957 }
958
959 /* Serialize current parameter values if required. */
960 if (!bms_is_empty(sendParams))
961 {
962 pei->param_exec = SerializeParamExecParams(estate, sendParams,
963 pei->area);
964 fpes->param_exec = pei->param_exec;
965 }
966
967 /* Traverse plan tree and let each child node reset associated state. */
968 estate->es_query_dsa = pei->area;
969 ExecParallelReInitializeDSM(planstate, pei->pcxt);
970 estate->es_query_dsa = NULL;
971}
972
973/*
974 * Traverse plan tree to reinitialize per-node dynamic shared memory state
975 */
976static bool
978 ParallelContext *pcxt)
979{
980 if (planstate == NULL)
981 return false;
982
983 /*
984 * Call reinitializers for DSM-using plan nodes.
985 */
986 switch (nodeTag(planstate))
987 {
988 case T_SeqScanState:
989 if (planstate->plan->parallel_aware)
991 pcxt);
992 break;
993 case T_IndexScanState:
994 if (planstate->plan->parallel_aware)
996 pcxt);
997 break;
998 case T_IndexOnlyScanState:
999 if (planstate->plan->parallel_aware)
1001 pcxt);
1002 break;
1003 case T_ForeignScanState:
1004 if (planstate->plan->parallel_aware)
1006 pcxt);
1007 break;
1008 case T_TidRangeScanState:
1009 if (planstate->plan->parallel_aware)
1011 pcxt);
1012 break;
1013 case T_AppendState:
1014 if (planstate->plan->parallel_aware)
1015 ExecAppendReInitializeDSM((AppendState *) planstate, pcxt);
1016 break;
1017 case T_CustomScanState:
1018 if (planstate->plan->parallel_aware)
1020 pcxt);
1021 break;
1022 case T_BitmapHeapScanState:
1023 if (planstate->plan->parallel_aware)
1025 pcxt);
1026 break;
1027 case T_HashJoinState:
1028 if (planstate->plan->parallel_aware)
1030 pcxt);
1031 break;
1032 case T_BitmapIndexScanState:
1033 case T_HashState:
1034 case T_SortState:
1035 case T_IncrementalSortState:
1036 case T_MemoizeState:
1037 /* these nodes have DSM state, but no reinitialization is required */
1038 break;
1039
1040 default:
1041 break;
1042 }
1043
1044 return planstate_tree_walker(planstate, ExecParallelReInitializeDSM, pcxt);
1045}
1046
1047/*
1048 * Copy instrumentation information about this node and its descendants from
1049 * dynamic shared memory.
1050 */
1051static bool
1053 SharedExecutorInstrumentation *instrumentation)
1054{
1055 Instrumentation *instrument;
1056 int i;
1057 int n;
1058 int ibytes;
1059 int plan_node_id = planstate->plan->plan_node_id;
1060 MemoryContext oldcontext;
1061
1062 /* Find the instrumentation for this node. */
1063 for (i = 0; i < instrumentation->num_plan_nodes; ++i)
1064 if (instrumentation->plan_node_id[i] == plan_node_id)
1065 break;
1066 if (i >= instrumentation->num_plan_nodes)
1067 elog(ERROR, "plan node %d not found", plan_node_id);
1068
1069 /* Accumulate the statistics from all workers. */
1070 instrument = GetInstrumentationArray(instrumentation);
1071 instrument += i * instrumentation->num_workers;
1072 for (n = 0; n < instrumentation->num_workers; ++n)
1073 InstrAggNode(planstate->instrument, &instrument[n]);
1074
1075 /*
1076 * Also store the per-worker detail.
1077 *
1078 * Worker instrumentation should be allocated in the same context as the
1079 * regular instrumentation information, which is the per-query context.
1080 * Switch into per-query memory context.
1081 */
1082 oldcontext = MemoryContextSwitchTo(planstate->state->es_query_cxt);
1083 ibytes = mul_size(instrumentation->num_workers, sizeof(Instrumentation));
1084 planstate->worker_instrument =
1085 palloc(ibytes + offsetof(WorkerInstrumentation, instrument));
1086 MemoryContextSwitchTo(oldcontext);
1087
1088 planstate->worker_instrument->num_workers = instrumentation->num_workers;
1089 memcpy(&planstate->worker_instrument->instrument, instrument, ibytes);
1090
1091 /* Perform any node-type-specific work that needs to be done. */
1092 switch (nodeTag(planstate))
1093 {
1094 case T_IndexScanState:
1096 break;
1097 case T_IndexOnlyScanState:
1099 break;
1100 case T_BitmapIndexScanState:
1102 break;
1103 case T_SortState:
1105 break;
1106 case T_IncrementalSortState:
1108 break;
1109 case T_HashState:
1111 break;
1112 case T_AggState:
1114 break;
1115 case T_MemoizeState:
1117 break;
1118 case T_BitmapHeapScanState:
1120 break;
1121 default:
1122 break;
1123 }
1124
1126 instrumentation);
1127}
1128
1129/*
1130 * Add up the workers' JIT instrumentation from dynamic shared memory.
1131 */
1132static void
1134 SharedJitInstrumentation *shared_jit)
1135{
1136 JitInstrumentation *combined;
1137 int ibytes;
1138
1139 int n;
1140
1141 /*
1142 * Accumulate worker JIT instrumentation into the combined JIT
1143 * instrumentation, allocating it if required.
1144 */
1145 if (!planstate->state->es_jit_worker_instr)
1146 planstate->state->es_jit_worker_instr =
1148 combined = planstate->state->es_jit_worker_instr;
1149
1150 /* Accumulate all the workers' instrumentations. */
1151 for (n = 0; n < shared_jit->num_workers; ++n)
1152 InstrJitAgg(combined, &shared_jit->jit_instr[n]);
1153
1154 /*
1155 * Store the per-worker detail.
1156 *
1157 * Similar to ExecParallelRetrieveInstrumentation(), allocate the
1158 * instrumentation in per-query context.
1159 */
1160 ibytes = offsetof(SharedJitInstrumentation, jit_instr)
1161 + mul_size(shared_jit->num_workers, sizeof(JitInstrumentation));
1162 planstate->worker_jit_instrument =
1163 MemoryContextAlloc(planstate->state->es_query_cxt, ibytes);
1164
1165 memcpy(planstate->worker_jit_instrument, shared_jit, ibytes);
1166}
1167
1168/*
1169 * Finish parallel execution. We wait for parallel workers to finish, and
1170 * accumulate their buffer/WAL usage.
1171 */
1172void
1174{
1175 int nworkers = pei->pcxt->nworkers_launched;
1176 int i;
1177
1178 /* Make this be a no-op if called twice in a row. */
1179 if (pei->finished)
1180 return;
1181
1182 /*
1183 * Detach from tuple queues ASAP, so that any still-active workers will
1184 * notice that no further results are wanted.
1185 */
1186 if (pei->tqueue != NULL)
1187 {
1188 for (i = 0; i < nworkers; i++)
1189 shm_mq_detach(pei->tqueue[i]);
1190 pfree(pei->tqueue);
1191 pei->tqueue = NULL;
1192 }
1193
1194 /*
1195 * While we're waiting for the workers to finish, let's get rid of the
1196 * tuple queue readers. (Any other local cleanup could be done here too.)
1197 */
1198 if (pei->reader != NULL)
1199 {
1200 for (i = 0; i < nworkers; i++)
1202 pfree(pei->reader);
1203 pei->reader = NULL;
1204 }
1205
1206 /* Now wait for the workers to finish. */
1208
1209 /*
1210 * Next, accumulate buffer/WAL usage. (This must wait for the workers to
1211 * finish, or we might get incomplete data.)
1212 */
1213 for (i = 0; i < nworkers; i++)
1215
1216 pei->finished = true;
1217}
1218
1219/*
1220 * Accumulate instrumentation, and then clean up whatever ParallelExecutorInfo
1221 * resources still exist after ExecParallelFinish. We separate these
1222 * routines because someone might want to examine the contents of the DSM
1223 * after ExecParallelFinish and before calling this routine.
1224 */
1225void
1227{
1228 /* Accumulate instrumentation, if any. */
1229 if (pei->instrumentation)
1231 pei->instrumentation);
1232
1233 /* Accumulate JIT instrumentation, if any. */
1234 if (pei->jit_instrumentation)
1236 pei->jit_instrumentation);
1237
1238 /* Free any serialized parameters. */
1239 if (DsaPointerIsValid(pei->param_exec))
1240 {
1241 dsa_free(pei->area, pei->param_exec);
1243 }
1244 if (pei->area != NULL)
1245 {
1246 dsa_detach(pei->area);
1247 pei->area = NULL;
1248 }
1249 if (pei->pcxt != NULL)
1250 {
1252 pei->pcxt = NULL;
1253 }
1254 pfree(pei);
1255}
1256
1257/*
1258 * Create a DestReceiver to write tuples we produce to the shm_mq designated
1259 * for that purpose.
1260 */
1261static DestReceiver *
1263{
1264 char *mqspace;
1265 shm_mq *mq;
1266
1267 mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE, false);
1269 mq = (shm_mq *) mqspace;
1271 return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL));
1272}
1273
1274/*
1275 * Create a QueryDesc for the PlannedStmt we are to execute, and return it.
1276 */
1277static QueryDesc *
1279 int instrument_options)
1280{
1281 char *pstmtspace;
1282 char *paramspace;
1283 PlannedStmt *pstmt;
1284 ParamListInfo paramLI;
1285 char *queryString;
1286
1287 /* Get the query string from shared memory */
1288 queryString = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT, false);
1289
1290 /* Reconstruct leader-supplied PlannedStmt. */
1291 pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT, false);
1292 pstmt = (PlannedStmt *) stringToNode(pstmtspace);
1293
1294 /* Reconstruct ParamListInfo. */
1295 paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMLISTINFO, false);
1296 paramLI = RestoreParamList(&paramspace);
1297
1298 /* Create a QueryDesc for the query. */
1299 return CreateQueryDesc(pstmt,
1300 queryString,
1302 receiver, paramLI, NULL, instrument_options);
1303}
1304
1305/*
1306 * Copy instrumentation information from this node and its descendants into
1307 * dynamic shared memory, so that the parallel leader can retrieve it.
1308 */
1309static bool
1311 SharedExecutorInstrumentation *instrumentation)
1312{
1313 int i;
1314 int plan_node_id = planstate->plan->plan_node_id;
1315 Instrumentation *instrument;
1316
1317 InstrEndLoop(planstate->instrument);
1318
1319 /*
1320 * If we shuffled the plan_node_id values in ps_instrument into sorted
1321 * order, we could use binary search here. This might matter someday if
1322 * we're pushing down sufficiently large plan trees. For now, do it the
1323 * slow, dumb way.
1324 */
1325 for (i = 0; i < instrumentation->num_plan_nodes; ++i)
1326 if (instrumentation->plan_node_id[i] == plan_node_id)
1327 break;
1328 if (i >= instrumentation->num_plan_nodes)
1329 elog(ERROR, "plan node %d not found", plan_node_id);
1330
1331 /*
1332 * Add our statistics to the per-node, per-worker totals. It's possible
1333 * that this could happen more than once if we relaunched workers.
1334 */
1335 instrument = GetInstrumentationArray(instrumentation);
1336 instrument += i * instrumentation->num_workers;
1338 Assert(ParallelWorkerNumber < instrumentation->num_workers);
1339 InstrAggNode(&instrument[ParallelWorkerNumber], planstate->instrument);
1340
1342 instrumentation);
1343}
1344
1345/*
1346 * Initialize the PlanState and its descendants with the information
1347 * retrieved from shared memory. This has to be done once the PlanState
1348 * is allocated and initialized by executor; that is, after ExecutorStart().
1349 */
1350static bool
1352{
1353 if (planstate == NULL)
1354 return false;
1355
1356 switch (nodeTag(planstate))
1357 {
1358 case T_SeqScanState:
1359 if (planstate->plan->parallel_aware)
1360 ExecSeqScanInitializeWorker((SeqScanState *) planstate, pwcxt);
1361 break;
1362 case T_IndexScanState:
1363 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1364 ExecIndexScanInitializeWorker((IndexScanState *) planstate, pwcxt);
1365 break;
1366 case T_IndexOnlyScanState:
1367 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1369 pwcxt);
1370 break;
1371 case T_BitmapIndexScanState:
1372 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1374 pwcxt);
1375 break;
1376 case T_ForeignScanState:
1377 if (planstate->plan->parallel_aware)
1379 pwcxt);
1380 break;
1381 case T_TidRangeScanState:
1382 if (planstate->plan->parallel_aware)
1384 pwcxt);
1385 break;
1386 case T_AppendState:
1387 if (planstate->plan->parallel_aware)
1388 ExecAppendInitializeWorker((AppendState *) planstate, pwcxt);
1389 break;
1390 case T_CustomScanState:
1391 if (planstate->plan->parallel_aware)
1393 pwcxt);
1394 break;
1395 case T_BitmapHeapScanState:
1396 if (planstate->plan->parallel_aware)
1398 pwcxt);
1399 break;
1400 case T_HashJoinState:
1401 if (planstate->plan->parallel_aware)
1403 pwcxt);
1404 break;
1405 case T_HashState:
1406 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1407 ExecHashInitializeWorker((HashState *) planstate, pwcxt);
1408 break;
1409 case T_SortState:
1410 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1411 ExecSortInitializeWorker((SortState *) planstate, pwcxt);
1412 break;
1413 case T_IncrementalSortState:
1414 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1416 pwcxt);
1417 break;
1418 case T_AggState:
1419 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1420 ExecAggInitializeWorker((AggState *) planstate, pwcxt);
1421 break;
1422 case T_MemoizeState:
1423 /* even when not parallel-aware, for EXPLAIN ANALYZE */
1424 ExecMemoizeInitializeWorker((MemoizeState *) planstate, pwcxt);
1425 break;
1426 default:
1427 break;
1428 }
1429
1431 pwcxt);
1432}
1433
1434/*
1435 * Main entrypoint for parallel query worker processes.
1436 *
1437 * We reach this function from ParallelWorkerMain, so the setup necessary to
1438 * create a sensible parallel environment has already been done;
1439 * ParallelWorkerMain worries about stuff like the transaction state, combo
1440 * CID mappings, and GUC values, so we don't need to deal with any of that
1441 * here.
1442 *
1443 * Our job is to deal with concerns specific to the executor. The parallel
1444 * group leader will have stored a serialized PlannedStmt, and it's our job
1445 * to execute that plan and write the resulting tuples to the appropriate
1446 * tuple queue. Various bits of supporting information that we need in order
1447 * to do this are also stored in the dsm_segment and can be accessed through
1448 * the shm_toc.
1449 */
1450void
1452{
1454 BufferUsage *buffer_usage;
1455 WalUsage *wal_usage;
1456 DestReceiver *receiver;
1457 QueryDesc *queryDesc;
1458 SharedExecutorInstrumentation *instrumentation;
1459 SharedJitInstrumentation *jit_instrumentation;
1460 int instrument_options = 0;
1461 void *area_space;
1462 dsa_area *area;
1464
1465 /* Get fixed-size state. */
1466 fpes = shm_toc_lookup(toc, PARALLEL_KEY_EXECUTOR_FIXED, false);
1467
1468 /* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */
1469 receiver = ExecParallelGetReceiver(seg, toc);
1470 instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION, true);
1471 if (instrumentation != NULL)
1472 instrument_options = instrumentation->instrument_options;
1473 jit_instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_JIT_INSTRUMENTATION,
1474 true);
1475 queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options);
1476
1477 /* Setting debug_query_string for individual workers */
1478 debug_query_string = queryDesc->sourceText;
1479
1480 /* Report workers' query for monitoring purposes */
1482
1483 /* Attach to the dynamic shared memory area. */
1484 area_space = shm_toc_lookup(toc, PARALLEL_KEY_DSA, false);
1485 area = dsa_attach_in_place(area_space, seg);
1486
1487 /* Start up the executor */
1488 queryDesc->plannedstmt->jitFlags = fpes->jit_flags;
1489 ExecutorStart(queryDesc, fpes->eflags);
1490
1491 /* Special executor initialization steps for parallel workers */
1492 queryDesc->planstate->state->es_query_dsa = area;
1493 if (DsaPointerIsValid(fpes->param_exec))
1494 {
1495 char *paramexec_space;
1496
1497 paramexec_space = dsa_get_address(area, fpes->param_exec);
1498 RestoreParamExecParams(paramexec_space, queryDesc->estate);
1499 }
1500 pwcxt.toc = toc;
1501 pwcxt.seg = seg;
1502 ExecParallelInitializeWorker(queryDesc->planstate, &pwcxt);
1503
1504 /* Pass down any tuple bound */
1505 ExecSetTupleBound(fpes->tuples_needed, queryDesc->planstate);
1506
1507 /*
1508 * Prepare to track buffer/WAL usage during query execution.
1509 *
1510 * We do this after starting up the executor to match what happens in the
1511 * leader, which also doesn't count buffer accesses and WAL activity that
1512 * occur during executor startup.
1513 */
1515
1516 /*
1517 * Run the plan. If we specified a tuple bound, be careful not to demand
1518 * more tuples than that.
1519 */
1520 ExecutorRun(queryDesc,
1522 fpes->tuples_needed < 0 ? (int64) 0 : fpes->tuples_needed);
1523
1524 /* Shut down the executor */
1525 ExecutorFinish(queryDesc);
1526
1527 /* Report buffer/WAL usage during parallel execution. */
1528 buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE, false);
1529 wal_usage = shm_toc_lookup(toc, PARALLEL_KEY_WAL_USAGE, false);
1531 &wal_usage[ParallelWorkerNumber]);
1532
1533 /* Report instrumentation data if any instrumentation options are set. */
1534 if (instrumentation != NULL)
1536 instrumentation);
1537
1538 /* Report JIT instrumentation data if any */
1539 if (queryDesc->estate->es_jit && jit_instrumentation != NULL)
1540 {
1541 Assert(ParallelWorkerNumber < jit_instrumentation->num_workers);
1542 jit_instrumentation->jit_instr[ParallelWorkerNumber] =
1543 queryDesc->estate->es_jit->instr;
1544 }
1545
1546 /* Must do this after capturing instrumentation. */
1547 ExecutorEnd(queryDesc);
1548
1549 /* Cleanup. */
1550 dsa_detach(area);
1551 FreeQueryDesc(queryDesc);
1552 receiver->rDestroy(receiver);
1553}
int ParallelWorkerNumber
Definition: parallel.c:115
void InitializeParallelDSM(ParallelContext *pcxt)
Definition: parallel.c:211
void WaitForParallelWorkersToFinish(ParallelContext *pcxt)
Definition: parallel.c:796
void ReinitializeParallelDSM(ParallelContext *pcxt)
Definition: parallel.c:508
void DestroyParallelContext(ParallelContext *pcxt)
Definition: parallel.c:950
ParallelContext * CreateParallelContext(const char *library_name, const char *function_name, int nworkers)
Definition: parallel.c:173
int64 pgstat_get_my_query_id(void)
void pgstat_report_activity(BackendState state, const char *cmd_str)
int64 pgstat_get_my_plan_id(void)
@ STATE_RUNNING
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1305
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:750
#define bms_is_empty(a)
Definition: bitmapset.h:118
#define MAXALIGN(LEN)
Definition: c.h:815
int64_t int64
Definition: c.h:540
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:475
int16_t int16
Definition: c.h:538
#define OidIsValid(objectId)
Definition: c.h:779
size_t Size
Definition: c.h:615
Datum datumRestore(char **start_address, bool *isnull)
Definition: datum.c:521
void datumSerialize(Datum value, bool isnull, bool typByVal, int typLen, char **start_address)
Definition: datum.c:459
Size datumEstimateSpace(Datum value, bool isnull, bool typByVal, int typLen)
Definition: datum.c:412
dsa_area * dsa_attach_in_place(void *place, dsm_segment *segment)
Definition: dsa.c:560
void * dsa_get_address(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:957
void dsa_detach(dsa_area *area)
Definition: dsa.c:1967
void dsa_free(dsa_area *area, dsa_pointer dp)
Definition: dsa.c:841
size_t dsa_minimum_size(void)
Definition: dsa.c:1211
uint64 dsa_pointer
Definition: dsa.h:62
#define dsa_allocate(area, size)
Definition: dsa.h:109
#define dsa_create_in_place(place, size, tranche_id, segment)
Definition: dsa.h:122
#define InvalidDsaPointer
Definition: dsa.h:78
#define DsaPointerIsValid(x)
Definition: dsa.h:106
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
void ExecutorEnd(QueryDesc *queryDesc)
Definition: execMain.c:466
void ExecutorFinish(QueryDesc *queryDesc)
Definition: execMain.c:406
void ExecutorStart(QueryDesc *queryDesc, int eflags)
Definition: execMain.c:122
void ExecutorRun(QueryDesc *queryDesc, ScanDirection direction, uint64 count)
Definition: execMain.c:297
#define PARALLEL_KEY_BUFFER_USAGE
Definition: execParallel.c:62
static bool ExecParallelReInitializeDSM(PlanState *planstate, ParallelContext *pcxt)
Definition: execParallel.c:977
#define PARALLEL_KEY_JIT_INSTRUMENTATION
Definition: execParallel.c:67
struct ExecParallelEstimateContext ExecParallelEstimateContext
#define PARALLEL_KEY_PARAMLISTINFO
Definition: execParallel.c:61
#define PARALLEL_TUPLE_QUEUE_SIZE
Definition: execParallel.c:70
static QueryDesc * ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver, int instrument_options)
static bool ExecParallelRetrieveInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation)
static dsa_pointer SerializeParamExecParams(EState *estate, Bitmapset *params, dsa_area *area)
Definition: execParallel.c:370
void ExecParallelCleanup(ParallelExecutorInfo *pei)
struct ExecParallelInitializeDSMContext ExecParallelInitializeDSMContext
#define PARALLEL_KEY_INSTRUMENTATION
Definition: execParallel.c:64
static DestReceiver * ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc)
void ParallelQueryMain(dsm_segment *seg, shm_toc *toc)
static shm_mq_handle ** ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize)
Definition: execParallel.c:559
#define PARALLEL_KEY_PLANNEDSTMT
Definition: execParallel.c:60
static bool ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e)
Definition: execParallel.c:235
#define GetInstrumentationArray(sei)
Definition: execParallel.c:108
void ExecParallelReinitialize(PlanState *planstate, ParallelExecutorInfo *pei, Bitmapset *sendParams)
Definition: execParallel.c:928
#define PARALLEL_KEY_DSA
Definition: execParallel.c:65
static bool ExecParallelInitializeWorker(PlanState *planstate, ParallelWorkerContext *pwcxt)
void ExecParallelCreateReaders(ParallelExecutorInfo *pei)
Definition: execParallel.c:902
#define PARALLEL_KEY_TUPLE_QUEUE
Definition: execParallel.c:63
#define PARALLEL_KEY_EXECUTOR_FIXED
Definition: execParallel.c:59
static char * ExecSerializePlan(Plan *plan, EState *estate)
Definition: execParallel.c:147
ParallelExecutorInfo * ExecInitParallelPlan(PlanState *planstate, EState *estate, Bitmapset *sendParams, int nworkers, int64 tuples_needed)
Definition: execParallel.c:611
struct FixedParallelExecutorState FixedParallelExecutorState
#define PARALLEL_KEY_QUERY_TEXT
Definition: execParallel.c:66
static Size EstimateParamExecSpace(EState *estate, Bitmapset *params)
Definition: execParallel.c:326
void ExecParallelFinish(ParallelExecutorInfo *pei)
static bool ExecParallelReportInstrumentation(PlanState *planstate, SharedExecutorInstrumentation *instrumentation)
#define PARALLEL_KEY_WAL_USAGE
Definition: execParallel.c:68
static void ExecParallelRetrieveJitInstrumentation(PlanState *planstate, SharedJitInstrumentation *shared_jit)
static bool ExecParallelInitializeDSM(PlanState *planstate, ExecParallelInitializeDSMContext *d)
Definition: execParallel.c:454
static void RestoreParamExecParams(char *start_address, EState *estate)
Definition: execParallel.c:425
void ExecSetTupleBound(int64 tuples_needed, PlanState *child_node)
Definition: execProcnode.c:848
#define GetPerTupleExprContext(estate)
Definition: executor.h:656
Assert(PointerIsAligned(start, uint64))
#define IsParallelWorker()
Definition: parallel.h:60
void InstrAccumParallelQuery(BufferUsage *bufusage, WalUsage *walusage)
Definition: instrument.c:218
void InstrEndLoop(Instrumentation *instr)
Definition: instrument.c:140
void InstrAggNode(Instrumentation *dst, Instrumentation *add)
Definition: instrument.c:169
void InstrEndParallelQuery(BufferUsage *bufusage, WalUsage *walusage)
Definition: instrument.c:208
void InstrStartParallelQuery(void)
Definition: instrument.c:200
void InstrInit(Instrumentation *instr, int instrument_options)
Definition: instrument.c:58
int i
Definition: isn.c:77
void InstrJitAgg(JitInstrumentation *dst, JitInstrumentation *add)
Definition: jit.c:182
struct JitInstrumentation JitInstrumentation
#define PGJIT_NONE
Definition: jit.h:19
List * lappend(List *list, void *datum)
Definition: list.c:339
void get_typlenbyval(Oid typid, int16 *typlen, bool *typbyval)
Definition: lsyscache.c:2418
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1229
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1263
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
void ExecAggEstimate(AggState *node, ParallelContext *pcxt)
Definition: nodeAgg.c:4785
void ExecAggInitializeWorker(AggState *node, ParallelWorkerContext *pwcxt)
Definition: nodeAgg.c:4831
void ExecAggRetrieveInstrumentation(AggState *node)
Definition: nodeAgg.c:4844
void ExecAggInitializeDSM(AggState *node, ParallelContext *pcxt)
Definition: nodeAgg.c:4806
void ExecAppendReInitializeDSM(AppendState *node, ParallelContext *pcxt)
Definition: nodeAppend.c:539
void ExecAppendInitializeWorker(AppendState *node, ParallelWorkerContext *pwcxt)
Definition: nodeAppend.c:555
void ExecAppendInitializeDSM(AppendState *node, ParallelContext *pcxt)
Definition: nodeAppend.c:518
void ExecAppendEstimate(AppendState *node, ParallelContext *pcxt)
Definition: nodeAppend.c:499
void ExecBitmapHeapInitializeWorker(BitmapHeapScanState *node, ParallelWorkerContext *pwcxt)
void ExecBitmapHeapEstimate(BitmapHeapScanState *node, ParallelContext *pcxt)
void ExecBitmapHeapRetrieveInstrumentation(BitmapHeapScanState *node)
void ExecBitmapHeapInitializeDSM(BitmapHeapScanState *node, ParallelContext *pcxt)
void ExecBitmapHeapReInitializeDSM(BitmapHeapScanState *node, ParallelContext *pcxt)
void ExecBitmapIndexScanEstimate(BitmapIndexScanState *node, ParallelContext *pcxt)
void ExecBitmapIndexScanInitializeDSM(BitmapIndexScanState *node, ParallelContext *pcxt)
void ExecBitmapIndexScanRetrieveInstrumentation(BitmapIndexScanState *node)
void ExecBitmapIndexScanInitializeWorker(BitmapIndexScanState *node, ParallelWorkerContext *pwcxt)
void ExecCustomScanInitializeDSM(CustomScanState *node, ParallelContext *pcxt)
Definition: nodeCustom.c:174
void ExecCustomScanEstimate(CustomScanState *node, ParallelContext *pcxt)
Definition: nodeCustom.c:161
void ExecCustomScanReInitializeDSM(CustomScanState *node, ParallelContext *pcxt)
Definition: nodeCustom.c:190
void ExecCustomScanInitializeWorker(CustomScanState *node, ParallelWorkerContext *pwcxt)
Definition: nodeCustom.c:205
void ExecForeignScanInitializeDSM(ForeignScanState *node, ParallelContext *pcxt)
void ExecForeignScanReInitializeDSM(ForeignScanState *node, ParallelContext *pcxt)
void ExecForeignScanEstimate(ForeignScanState *node, ParallelContext *pcxt)
void ExecForeignScanInitializeWorker(ForeignScanState *node, ParallelWorkerContext *pwcxt)
#define planstate_tree_walker(ps, w, c)
Definition: nodeFuncs.h:179
void ExecHashInitializeDSM(HashState *node, ParallelContext *pcxt)
Definition: nodeHash.c:2779
void ExecHashInitializeWorker(HashState *node, ParallelWorkerContext *pwcxt)
Definition: nodeHash.c:2804
void ExecHashEstimate(HashState *node, ParallelContext *pcxt)
Definition: nodeHash.c:2760
void ExecHashRetrieveInstrumentation(HashState *node)
Definition: nodeHash.c:2845
void ExecHashJoinInitializeDSM(HashJoinState *state, ParallelContext *pcxt)
void ExecHashJoinEstimate(HashJoinState *state, ParallelContext *pcxt)
void ExecHashJoinReInitializeDSM(HashJoinState *state, ParallelContext *pcxt)
void ExecHashJoinInitializeWorker(HashJoinState *state, ParallelWorkerContext *pwcxt)
void ExecIncrementalSortEstimate(IncrementalSortState *node, ParallelContext *pcxt)
void ExecIncrementalSortInitializeDSM(IncrementalSortState *node, ParallelContext *pcxt)
void ExecIncrementalSortRetrieveInstrumentation(IncrementalSortState *node)
void ExecIncrementalSortInitializeWorker(IncrementalSortState *node, ParallelWorkerContext *pwcxt)
void ExecIndexOnlyScanEstimate(IndexOnlyScanState *node, ParallelContext *pcxt)
void ExecIndexOnlyScanRetrieveInstrumentation(IndexOnlyScanState *node)
void ExecIndexOnlyScanInitializeWorker(IndexOnlyScanState *node, ParallelWorkerContext *pwcxt)
void ExecIndexOnlyScanReInitializeDSM(IndexOnlyScanState *node, ParallelContext *pcxt)
void ExecIndexOnlyScanInitializeDSM(IndexOnlyScanState *node, ParallelContext *pcxt)
void ExecIndexScanRetrieveInstrumentation(IndexScanState *node)
void ExecIndexScanEstimate(IndexScanState *node, ParallelContext *pcxt)
void ExecIndexScanReInitializeDSM(IndexScanState *node, ParallelContext *pcxt)
void ExecIndexScanInitializeDSM(IndexScanState *node, ParallelContext *pcxt)
void ExecIndexScanInitializeWorker(IndexScanState *node, ParallelWorkerContext *pwcxt)
void ExecMemoizeInitializeDSM(MemoizeState *node, ParallelContext *pcxt)
Definition: nodeMemoize.c:1211
void ExecMemoizeEstimate(MemoizeState *node, ParallelContext *pcxt)
Definition: nodeMemoize.c:1190
void ExecMemoizeRetrieveInstrumentation(MemoizeState *node)
Definition: nodeMemoize.c:1249
void ExecMemoizeInitializeWorker(MemoizeState *node, ParallelWorkerContext *pwcxt)
Definition: nodeMemoize.c:1236
void ExecSeqScanReInitializeDSM(SeqScanState *node, ParallelContext *pcxt)
Definition: nodeSeqscan.c:387
void ExecSeqScanInitializeWorker(SeqScanState *node, ParallelWorkerContext *pwcxt)
Definition: nodeSeqscan.c:403
void ExecSeqScanInitializeDSM(SeqScanState *node, ParallelContext *pcxt)
Definition: nodeSeqscan.c:365
void ExecSeqScanEstimate(SeqScanState *node, ParallelContext *pcxt)
Definition: nodeSeqscan.c:347
void ExecSortInitializeWorker(SortState *node, ParallelWorkerContext *pwcxt)
Definition: nodeSort.c:462
void ExecSortEstimate(SortState *node, ParallelContext *pcxt)
Definition: nodeSort.c:416
void ExecSortInitializeDSM(SortState *node, ParallelContext *pcxt)
Definition: nodeSort.c:437
void ExecSortRetrieveInstrumentation(SortState *node)
Definition: nodeSort.c:476
void ExecSetParamPlanMulti(const Bitmapset *params, ExprContext *econtext)
Definition: nodeSubplan.c:1296
void ExecTidRangeScanEstimate(TidRangeScanState *node, ParallelContext *pcxt)
void ExecTidRangeScanInitializeWorker(TidRangeScanState *node, ParallelWorkerContext *pwcxt)
void ExecTidRangeScanInitializeDSM(TidRangeScanState *node, ParallelContext *pcxt)
void ExecTidRangeScanReInitializeDSM(TidRangeScanState *node, ParallelContext *pcxt)
#define copyObject(obj)
Definition: nodes.h:232
#define nodeTag(nodeptr)
Definition: nodes.h:139
@ CMD_SELECT
Definition: nodes.h:275
#define makeNode(_type_)
Definition: nodes.h:161
char * nodeToString(const void *obj)
Definition: outfuncs.c:802
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
Size EstimateParamListSpace(ParamListInfo paramLI)
Definition: params.c:167
void SerializeParamList(ParamListInfo paramLI, char **start_address)
Definition: params.c:228
ParamListInfo RestoreParamList(char **start_address)
Definition: params.c:290
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
#define NIL
Definition: pg_list.h:68
static Oid list_nth_oid(const List *list, int n)
Definition: pg_list.h:321
#define plan(x)
Definition: pg_regress.c:161
@ PLAN_STMT_INTERNAL
Definition: plannodes.h:40
const char * debug_query_string
Definition: postgres.c:89
uint64_t Datum
Definition: postgres.h:70
unsigned int Oid
Definition: postgres_ext.h:32
void FreeQueryDesc(QueryDesc *qdesc)
Definition: pquery.c:106
QueryDesc * CreateQueryDesc(PlannedStmt *plannedstmt, const char *sourceText, Snapshot snapshot, Snapshot crosscheck_snapshot, DestReceiver *dest, ParamListInfo params, QueryEnvironment *queryEnv, int instrument_options)
Definition: pquery.c:68
e
Definition: preproc-init.c:82
void * stringToNode(const char *str)
Definition: read.c:90
@ ForwardScanDirection
Definition: sdir.h:28
void shm_mq_set_sender(shm_mq *mq, PGPROC *proc)
Definition: shm_mq.c:224
shm_mq * shm_mq_create(void *address, Size size)
Definition: shm_mq.c:177
void shm_mq_set_handle(shm_mq_handle *mqh, BackgroundWorkerHandle *handle)
Definition: shm_mq.c:319
void shm_mq_detach(shm_mq_handle *mqh)
Definition: shm_mq.c:843
void shm_mq_set_receiver(shm_mq *mq, PGPROC *proc)
Definition: shm_mq.c:206
shm_mq_handle * shm_mq_attach(shm_mq *mq, dsm_segment *seg, BackgroundWorkerHandle *handle)
Definition: shm_mq.c:290
void * shm_toc_allocate(shm_toc *toc, Size nbytes)
Definition: shm_toc.c:88
void shm_toc_insert(shm_toc *toc, uint64 key, void *address)
Definition: shm_toc.c:171
void * shm_toc_lookup(shm_toc *toc, uint64 key, bool noError)
Definition: shm_toc.c:232
#define shm_toc_estimate_chunk(e, sz)
Definition: shm_toc.h:51
#define shm_toc_estimate_keys(e, cnt)
Definition: shm_toc.h:53
Size add_size(Size s1, Size s2)
Definition: shmem.c:495
Size mul_size(Size s1, Size s2)
Definition: shmem.c:510
Snapshot GetActiveSnapshot(void)
Definition: snapmgr.c:801
#define InvalidSnapshot
Definition: snapshot.h:119
PGPROC * MyProc
Definition: proc.c:67
List * es_part_prune_infos
Definition: execnodes.h:670
struct dsa_area * es_query_dsa
Definition: execnodes.h:752
int es_top_eflags
Definition: execnodes.h:719
struct JitContext * es_jit
Definition: execnodes.h:764
int es_instrument
Definition: execnodes.h:720
PlannedStmt * es_plannedstmt
Definition: execnodes.h:669
struct JitInstrumentation * es_jit_worker_instr
Definition: execnodes.h:765
ParamExecData * es_param_exec_vals
Definition: execnodes.h:705
List * es_range_table
Definition: execnodes.h:662
List * es_rteperminfos
Definition: execnodes.h:668
Bitmapset * es_unpruned_relids
Definition: execnodes.h:673
ParamListInfo es_param_list_info
Definition: execnodes.h:704
MemoryContext es_query_cxt
Definition: execnodes.h:710
int es_jit_flags
Definition: execnodes.h:763
const char * es_sourceText
Definition: execnodes.h:677
Snapshot es_snapshot
Definition: execnodes.h:660
ParallelContext * pcxt
Definition: execParallel.c:115
SharedExecutorInstrumentation * instrumentation
Definition: execParallel.c:123
JitInstrumentation instr
Definition: jit.h:62
dsm_segment * seg
Definition: parallel.h:42
shm_toc_estimator estimator
Definition: parallel.h:41
ParallelWorkerInfo * worker
Definition: parallel.h:45
shm_toc * toc
Definition: parallel.h:44
int nworkers_launched
Definition: parallel.h:37
PlanState * planstate
Definition: execParallel.h:26
struct SharedJitInstrumentation * jit_instrumentation
Definition: execParallel.h:31
BufferUsage * buffer_usage
Definition: execParallel.h:28
dsa_pointer param_exec
Definition: execParallel.h:33
ParallelContext * pcxt
Definition: execParallel.h:27
WalUsage * wal_usage
Definition: execParallel.h:29
shm_mq_handle ** tqueue
Definition: execParallel.h:36
SharedExecutorInstrumentation * instrumentation
Definition: execParallel.h:30
struct TupleQueueReader ** reader
Definition: execParallel.h:37
dsm_segment * seg
Definition: parallel.h:52
BackgroundWorkerHandle * bgwhandle
Definition: parallel.h:27
bool isnull
Definition: params.h:149
Datum value
Definition: params.h:148
void * execPlan
Definition: params.h:147
struct SharedJitInstrumentation * worker_jit_instrument
Definition: execnodes.h:1179
Instrumentation * instrument
Definition: execnodes.h:1175
Plan * plan
Definition: execnodes.h:1165
EState * state
Definition: execnodes.h:1167
WorkerInstrumentation * worker_instrument
Definition: execnodes.h:1176
bool parallel_aware
Definition: plannodes.h:213
bool parallel_safe
Definition: plannodes.h:215
int plan_node_id
Definition: plannodes.h:227
struct Plan * planTree
Definition: plannodes.h:101
bool hasModifyingCTE
Definition: plannodes.h:83
List * appendRelations
Definition: plannodes.h:127
List * permInfos
Definition: plannodes.h:120
bool canSetTag
Definition: plannodes.h:86
List * rowMarks
Definition: plannodes.h:138
int64 planId
Definition: plannodes.h:74
int jitFlags
Definition: plannodes.h:98
Bitmapset * rewindPlanIDs
Definition: plannodes.h:135
int64 queryId
Definition: plannodes.h:71
ParseLoc stmt_len
Definition: plannodes.h:165
PlannedStmtOrigin planOrigin
Definition: plannodes.h:77
bool hasReturning
Definition: plannodes.h:80
ParseLoc stmt_location
Definition: plannodes.h:163
List * invalItems
Definition: plannodes.h:144
bool transientPlan
Definition: plannodes.h:89
List * resultRelations
Definition: plannodes.h:124
List * subplans
Definition: plannodes.h:132
List * relationOids
Definition: plannodes.h:141
bool dependsOnRole
Definition: plannodes.h:92
Bitmapset * unprunableRelids
Definition: plannodes.h:115
CmdType commandType
Definition: plannodes.h:68
Node * utilityStmt
Definition: plannodes.h:150
List * rtable
Definition: plannodes.h:109
List * partPruneInfos
Definition: plannodes.h:106
List * paramExecTypes
Definition: plannodes.h:147
bool parallelModeNeeded
Definition: plannodes.h:95
const char * sourceText
Definition: execdesc.h:38
EState * estate
Definition: execdesc.h:48
PlannedStmt * plannedstmt
Definition: execdesc.h:37
PlanState * planstate
Definition: execdesc.h:49
int plan_node_id[FLEXIBLE_ARRAY_MEMBER]
Definition: execParallel.c:105
JitInstrumentation jit_instr[FLEXIBLE_ARRAY_MEMBER]
Definition: jit.h:54
Instrumentation instrument[FLEXIBLE_ARRAY_MEMBER]
Definition: instrument.h:100
void(* rDestroy)(DestReceiver *self)
Definition: dest.h:126
Definition: dsa.c:348
Definition: shm_mq.c:72
DestReceiver * CreateTupleQueueDestReceiver(shm_mq_handle *handle)
Definition: tqueue.c:119
TupleQueueReader * CreateTupleQueueReader(shm_mq_handle *handle)
Definition: tqueue.c:139
void DestroyTupleQueueReader(TupleQueueReader *reader)
Definition: tqueue.c:155