PostgreSQL Source Code git master
heapam.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * heapam.c
4 * heap access method code
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/access/heap/heapam.c
12 *
13 *
14 * INTERFACE ROUTINES
15 * heap_beginscan - begin relation scan
16 * heap_rescan - restart a relation scan
17 * heap_endscan - end relation scan
18 * heap_getnext - retrieve next tuple in scan
19 * heap_fetch - retrieve tuple with given tid
20 * heap_insert - insert tuple into a relation
21 * heap_multi_insert - insert multiple tuples into a relation
22 * heap_delete - delete a tuple from a relation
23 * heap_update - replace a tuple in a relation with another tuple
24 *
25 * NOTES
26 * This file contains the heap_ routines which implement
27 * the POSTGRES heap access method used for all POSTGRES
28 * relations.
29 *
30 *-------------------------------------------------------------------------
31 */
32#include "postgres.h"
33
34#include "access/heapam.h"
35#include "access/heaptoast.h"
36#include "access/hio.h"
37#include "access/multixact.h"
38#include "access/subtrans.h"
39#include "access/syncscan.h"
40#include "access/valid.h"
42#include "access/xloginsert.h"
43#include "catalog/pg_database.h"
44#include "catalog/pg_database_d.h"
45#include "commands/vacuum.h"
46#include "pgstat.h"
47#include "port/pg_bitutils.h"
48#include "storage/lmgr.h"
49#include "storage/predicate.h"
50#include "storage/procarray.h"
51#include "utils/datum.h"
53#include "utils/inval.h"
54#include "utils/spccache.h"
55#include "utils/syscache.h"
56
57
59 TransactionId xid, CommandId cid, int options);
60static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf,
61 Buffer newbuf, HeapTuple oldtup,
62 HeapTuple newtup, HeapTuple old_key_tuple,
63 bool all_visible_cleared, bool new_all_visible_cleared);
64#ifdef USE_ASSERT_CHECKING
65static void check_lock_if_inplace_updateable_rel(Relation relation,
66 const ItemPointerData *otid,
67 HeapTuple newtup);
68static void check_inplace_rel_lock(HeapTuple oldtup);
69#endif
71 Bitmapset *interesting_cols,
72 Bitmapset *external_cols,
73 HeapTuple oldtup, HeapTuple newtup,
74 bool *has_external);
75static bool heap_acquire_tuplock(Relation relation, const ItemPointerData *tid,
77 bool *have_tuple_lock);
79 BlockNumber block,
80 ScanDirection dir);
82 ScanDirection dir);
83static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask,
84 uint16 old_infomask2, TransactionId add_to_xmax,
85 LockTupleMode mode, bool is_update,
86 TransactionId *result_xmax, uint16 *result_infomask,
87 uint16 *result_infomask2);
89 const ItemPointerData *ctid, TransactionId xid,
91static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask,
92 uint16 *new_infomask2);
94 uint16 t_infomask);
95static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask,
96 LockTupleMode lockmode, bool *current_is_member);
97static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask,
98 Relation rel, const ItemPointerData *ctid, XLTW_Oper oper,
99 int *remaining);
101 uint16 infomask, Relation rel, int *remaining,
102 bool logLockFailure);
103static void index_delete_sort(TM_IndexDeleteOp *delstate);
104static int bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate);
105static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup);
106static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
107 bool *copy);
108
109
110/*
111 * Each tuple lock mode has a corresponding heavyweight lock, and one or two
112 * corresponding MultiXactStatuses (one to merely lock tuples, another one to
113 * update them). This table (and the macros below) helps us determine the
114 * heavyweight lock mode and MultiXactStatus values to use for any particular
115 * tuple lock strength.
116 *
117 * These interact with InplaceUpdateTupleLock, an alias for ExclusiveLock.
118 *
119 * Don't look at lockstatus/updstatus directly! Use get_mxact_status_for_lock
120 * instead.
121 */
122static const struct
123{
127}
128
130{
131 { /* LockTupleKeyShare */
134 -1 /* KeyShare does not allow updating tuples */
135 },
136 { /* LockTupleShare */
139 -1 /* Share does not allow updating tuples */
140 },
141 { /* LockTupleNoKeyExclusive */
145 },
146 { /* LockTupleExclusive */
150 }
152
153/* Get the LOCKMODE for a given MultiXactStatus */
154#define LOCKMODE_from_mxstatus(status) \
155 (tupleLockExtraInfo[TUPLOCK_from_mxstatus((status))].hwlock)
156
157/*
158 * Acquire heavyweight locks on tuples, using a LockTupleMode strength value.
159 * This is more readable than having every caller translate it to lock.h's
160 * LOCKMODE.
161 */
162#define LockTupleTuplock(rel, tup, mode) \
163 LockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
164#define UnlockTupleTuplock(rel, tup, mode) \
165 UnlockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock)
166#define ConditionalLockTupleTuplock(rel, tup, mode, log) \
167 ConditionalLockTuple((rel), (tup), tupleLockExtraInfo[mode].hwlock, (log))
168
169#ifdef USE_PREFETCH
170/*
171 * heap_index_delete_tuples and index_delete_prefetch_buffer use this
172 * structure to coordinate prefetching activity
173 */
174typedef struct
175{
176 BlockNumber cur_hblkno;
177 int next_item;
178 int ndeltids;
179 TM_IndexDelete *deltids;
180} IndexDeletePrefetchState;
181#endif
182
183/* heap_index_delete_tuples bottom-up index deletion costing constants */
184#define BOTTOMUP_MAX_NBLOCKS 6
185#define BOTTOMUP_TOLERANCE_NBLOCKS 3
186
187/*
188 * heap_index_delete_tuples uses this when determining which heap blocks it
189 * must visit to help its bottom-up index deletion caller
190 */
191typedef struct IndexDeleteCounts
192{
193 int16 npromisingtids; /* Number of "promising" TIDs in group */
194 int16 ntids; /* Number of TIDs in group */
195 int16 ifirsttid; /* Offset to group's first deltid */
197
198/*
199 * This table maps tuple lock strength values for each particular
200 * MultiXactStatus value.
201 */
203{
204 LockTupleKeyShare, /* ForKeyShare */
205 LockTupleShare, /* ForShare */
206 LockTupleNoKeyExclusive, /* ForNoKeyUpdate */
207 LockTupleExclusive, /* ForUpdate */
208 LockTupleNoKeyExclusive, /* NoKeyUpdate */
209 LockTupleExclusive /* Update */
210};
211
212/* Get the LockTupleMode for a given MultiXactStatus */
213#define TUPLOCK_from_mxstatus(status) \
214 (MultiXactStatusLock[(status)])
215
216/*
217 * Check that we have a valid snapshot if we might need TOAST access.
218 */
219static inline void
221{
222#ifdef USE_ASSERT_CHECKING
223
224 /* bootstrap mode in particular breaks this rule */
226 return;
227
228 /* if the relation doesn't have a TOAST table, we are good */
229 if (!OidIsValid(rel->rd_rel->reltoastrelid))
230 return;
231
233
234#endif /* USE_ASSERT_CHECKING */
235}
236
237/* ----------------------------------------------------------------
238 * heap support routines
239 * ----------------------------------------------------------------
240 */
241
242/*
243 * Streaming read API callback for parallel sequential scans. Returns the next
244 * block the caller wants from the read stream or InvalidBlockNumber when done.
245 */
246static BlockNumber
248 void *callback_private_data,
249 void *per_buffer_data)
250{
251 HeapScanDesc scan = (HeapScanDesc) callback_private_data;
252
255
256 if (unlikely(!scan->rs_inited))
257 {
258 /* parallel scan */
262 scan->rs_startblock,
263 scan->rs_numblocks);
264
265 /* may return InvalidBlockNumber if there are no more blocks */
269 scan->rs_inited = true;
270 }
271 else
272 {
275 scan->rs_base.rs_parallel);
276 }
277
278 return scan->rs_prefetch_block;
279}
280
281/*
282 * Streaming read API callback for serial sequential and TID range scans.
283 * Returns the next block the caller wants from the read stream or
284 * InvalidBlockNumber when done.
285 */
286static BlockNumber
288 void *callback_private_data,
289 void *per_buffer_data)
290{
291 HeapScanDesc scan = (HeapScanDesc) callback_private_data;
292
293 if (unlikely(!scan->rs_inited))
294 {
296 scan->rs_inited = true;
297 }
298 else
300 scan->rs_prefetch_block,
301 scan->rs_dir);
302
303 return scan->rs_prefetch_block;
304}
305
306/*
307 * Read stream API callback for bitmap heap scans.
308 * Returns the next block the caller wants from the read stream or
309 * InvalidBlockNumber when done.
310 */
311static BlockNumber
312bitmapheap_stream_read_next(ReadStream *pgsr, void *private_data,
313 void *per_buffer_data)
314{
315 TBMIterateResult *tbmres = per_buffer_data;
316 BitmapHeapScanDesc bscan = (BitmapHeapScanDesc) private_data;
317 HeapScanDesc hscan = (HeapScanDesc) bscan;
318 TableScanDesc sscan = &hscan->rs_base;
319
320 for (;;)
321 {
323
324 /* no more entries in the bitmap */
325 if (!tbm_iterate(&sscan->st.rs_tbmiterator, tbmres))
326 return InvalidBlockNumber;
327
328 /*
329 * Ignore any claimed entries past what we think is the end of the
330 * relation. It may have been extended after the start of our scan (we
331 * only hold an AccessShareLock, and it could be inserts from this
332 * backend). We don't take this optimization in SERIALIZABLE
333 * isolation though, as we need to examine all invisible tuples
334 * reachable by the index.
335 */
337 tbmres->blockno >= hscan->rs_nblocks)
338 continue;
339
340 return tbmres->blockno;
341 }
342
343 /* not reachable */
344 Assert(false);
345}
346
347/* ----------------
348 * initscan - scan code common to heap_beginscan and heap_rescan
349 * ----------------
350 */
351static void
352initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
353{
354 ParallelBlockTableScanDesc bpscan = NULL;
355 bool allow_strat;
356 bool allow_sync;
357
358 /*
359 * Determine the number of blocks we have to scan.
360 *
361 * It is sufficient to do this once at scan start, since any tuples added
362 * while the scan is in progress will be invisible to my snapshot anyway.
363 * (That is not true when using a non-MVCC snapshot. However, we couldn't
364 * guarantee to return tuples added after scan start anyway, since they
365 * might go into pages we already scanned. To guarantee consistent
366 * results for a non-MVCC snapshot, the caller must hold some higher-level
367 * lock that ensures the interesting tuple(s) won't change.)
368 */
369 if (scan->rs_base.rs_parallel != NULL)
370 {
372 scan->rs_nblocks = bpscan->phs_nblocks;
373 }
374 else
376
377 /*
378 * If the table is large relative to NBuffers, use a bulk-read access
379 * strategy and enable synchronized scanning (see syncscan.c). Although
380 * the thresholds for these features could be different, we make them the
381 * same so that there are only two behaviors to tune rather than four.
382 * (However, some callers need to be able to disable one or both of these
383 * behaviors, independently of the size of the table; also there is a GUC
384 * variable that can disable synchronized scanning.)
385 *
386 * Note that table_block_parallelscan_initialize has a very similar test;
387 * if you change this, consider changing that one, too.
388 */
390 scan->rs_nblocks > NBuffers / 4)
391 {
392 allow_strat = (scan->rs_base.rs_flags & SO_ALLOW_STRAT) != 0;
393 allow_sync = (scan->rs_base.rs_flags & SO_ALLOW_SYNC) != 0;
394 }
395 else
396 allow_strat = allow_sync = false;
397
398 if (allow_strat)
399 {
400 /* During a rescan, keep the previous strategy object. */
401 if (scan->rs_strategy == NULL)
403 }
404 else
405 {
406 if (scan->rs_strategy != NULL)
408 scan->rs_strategy = NULL;
409 }
410
411 if (scan->rs_base.rs_parallel != NULL)
412 {
413 /* For parallel scan, believe whatever ParallelTableScanDesc says. */
416 else
417 scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
418
419 /*
420 * If not rescanning, initialize the startblock. Finding the actual
421 * start location is done in table_block_parallelscan_startblock_init,
422 * based on whether an alternative start location has been set with
423 * heap_setscanlimits, or using the syncscan location, when syncscan
424 * is enabled.
425 */
426 if (!keep_startblock)
428 }
429 else
430 {
431 if (keep_startblock)
432 {
433 /*
434 * When rescanning, we want to keep the previous startblock
435 * setting, so that rewinding a cursor doesn't generate surprising
436 * results. Reset the active syncscan setting, though.
437 */
438 if (allow_sync && synchronize_seqscans)
440 else
441 scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
442 }
443 else if (allow_sync && synchronize_seqscans)
444 {
447 }
448 else
449 {
450 scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
451 scan->rs_startblock = 0;
452 }
453 }
454
456 scan->rs_inited = false;
457 scan->rs_ctup.t_data = NULL;
459 scan->rs_cbuf = InvalidBuffer;
461 scan->rs_ntuples = 0;
462 scan->rs_cindex = 0;
463
464 /*
465 * Initialize to ForwardScanDirection because it is most common and
466 * because heap scans go forward before going backward (e.g. CURSORs).
467 */
470
471 /* page-at-a-time fields are always invalid when not rs_inited */
472
473 /*
474 * copy the scan key, if appropriate
475 */
476 if (key != NULL && scan->rs_base.rs_nkeys > 0)
477 memcpy(scan->rs_base.rs_key, key, scan->rs_base.rs_nkeys * sizeof(ScanKeyData));
478
479 /*
480 * Currently, we only have a stats counter for sequential heap scans (but
481 * e.g for bitmap scans the underlying bitmap index scans will be counted,
482 * and for sample scans we update stats for tuple fetches).
483 */
484 if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN)
486}
487
488/*
489 * heap_setscanlimits - restrict range of a heapscan
490 *
491 * startBlk is the page to start at
492 * numBlks is number of pages to scan (InvalidBlockNumber means "all")
493 */
494void
496{
497 HeapScanDesc scan = (HeapScanDesc) sscan;
498
499 Assert(!scan->rs_inited); /* else too late to change */
500 /* else rs_startblock is significant */
502
503 /* Check startBlk is valid (but allow case of zero blocks...) */
504 Assert(startBlk == 0 || startBlk < scan->rs_nblocks);
505
506 scan->rs_startblock = startBlk;
507 scan->rs_numblocks = numBlks;
508}
509
510/*
511 * Per-tuple loop for heap_prepare_pagescan(). Pulled out so it can be called
512 * multiple times, with constant arguments for all_visible,
513 * check_serializable.
514 */
516static int
518 Page page, Buffer buffer,
519 BlockNumber block, int lines,
520 bool all_visible, bool check_serializable)
521{
522 int ntup = 0;
523 OffsetNumber lineoff;
524
525 for (lineoff = FirstOffsetNumber; lineoff <= lines; lineoff++)
526 {
527 ItemId lpp = PageGetItemId(page, lineoff);
528 HeapTupleData loctup;
529 bool valid;
530
531 if (!ItemIdIsNormal(lpp))
532 continue;
533
534 loctup.t_data = (HeapTupleHeader) PageGetItem(page, lpp);
535 loctup.t_len = ItemIdGetLength(lpp);
537 ItemPointerSet(&(loctup.t_self), block, lineoff);
538
539 if (all_visible)
540 valid = true;
541 else
542 valid = HeapTupleSatisfiesVisibility(&loctup, snapshot, buffer);
543
544 if (check_serializable)
546 &loctup, buffer, snapshot);
547
548 if (valid)
549 {
550 scan->rs_vistuples[ntup] = lineoff;
551 ntup++;
552 }
553 }
554
556
557 return ntup;
558}
559
560/*
561 * heap_prepare_pagescan - Prepare current scan page to be scanned in pagemode
562 *
563 * Preparation currently consists of 1. prune the scan's rs_cbuf page, and 2.
564 * fill the rs_vistuples[] array with the OffsetNumbers of visible tuples.
565 */
566void
568{
569 HeapScanDesc scan = (HeapScanDesc) sscan;
570 Buffer buffer = scan->rs_cbuf;
571 BlockNumber block = scan->rs_cblock;
572 Snapshot snapshot;
573 Page page;
574 int lines;
575 bool all_visible;
576 bool check_serializable;
577
578 Assert(BufferGetBlockNumber(buffer) == block);
579
580 /* ensure we're not accidentally being used when not in pagemode */
582 snapshot = scan->rs_base.rs_snapshot;
583
584 /*
585 * Prune and repair fragmentation for the whole page, if possible.
586 */
587 heap_page_prune_opt(scan->rs_base.rs_rd, buffer);
588
589 /*
590 * We must hold share lock on the buffer content while examining tuple
591 * visibility. Afterwards, however, the tuples we have found to be
592 * visible are guaranteed good as long as we hold the buffer pin.
593 */
595
596 page = BufferGetPage(buffer);
597 lines = PageGetMaxOffsetNumber(page);
598
599 /*
600 * If the all-visible flag indicates that all tuples on the page are
601 * visible to everyone, we can skip the per-tuple visibility tests.
602 *
603 * Note: In hot standby, a tuple that's already visible to all
604 * transactions on the primary might still be invisible to a read-only
605 * transaction in the standby. We partly handle this problem by tracking
606 * the minimum xmin of visible tuples as the cut-off XID while marking a
607 * page all-visible on the primary and WAL log that along with the
608 * visibility map SET operation. In hot standby, we wait for (or abort)
609 * all transactions that can potentially may not see one or more tuples on
610 * the page. That's how index-only scans work fine in hot standby. A
611 * crucial difference between index-only scans and heap scans is that the
612 * index-only scan completely relies on the visibility map where as heap
613 * scan looks at the page-level PD_ALL_VISIBLE flag. We are not sure if
614 * the page-level flag can be trusted in the same way, because it might
615 * get propagated somehow without being explicitly WAL-logged, e.g. via a
616 * full page write. Until we can prove that beyond doubt, let's check each
617 * tuple for visibility the hard way.
618 */
619 all_visible = PageIsAllVisible(page) && !snapshot->takenDuringRecovery;
620 check_serializable =
622
623 /*
624 * We call page_collect_tuples() with constant arguments, to get the
625 * compiler to constant fold the constant arguments. Separate calls with
626 * constant arguments, rather than variables, are needed on several
627 * compilers to actually perform constant folding.
628 */
629 if (likely(all_visible))
630 {
631 if (likely(!check_serializable))
632 scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
633 block, lines, true, false);
634 else
635 scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
636 block, lines, true, true);
637 }
638 else
639 {
640 if (likely(!check_serializable))
641 scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
642 block, lines, false, false);
643 else
644 scan->rs_ntuples = page_collect_tuples(scan, snapshot, page, buffer,
645 block, lines, false, true);
646 }
647
649}
650
651/*
652 * heap_fetch_next_buffer - read and pin the next block from MAIN_FORKNUM.
653 *
654 * Read the next block of the scan relation from the read stream and save it
655 * in the scan descriptor. It is already pinned.
656 */
657static inline void
659{
660 Assert(scan->rs_read_stream);
661
662 /* release previous scan buffer, if any */
663 if (BufferIsValid(scan->rs_cbuf))
664 {
665 ReleaseBuffer(scan->rs_cbuf);
666 scan->rs_cbuf = InvalidBuffer;
667 }
668
669 /*
670 * Be sure to check for interrupts at least once per page. Checks at
671 * higher code levels won't be able to stop a seqscan that encounters many
672 * pages' worth of consecutive dead tuples.
673 */
675
676 /*
677 * If the scan direction is changing, reset the prefetch block to the
678 * current block. Otherwise, we will incorrectly prefetch the blocks
679 * between the prefetch block and the current block again before
680 * prefetching blocks in the new, correct scan direction.
681 */
682 if (unlikely(scan->rs_dir != dir))
683 {
684 scan->rs_prefetch_block = scan->rs_cblock;
686 }
687
688 scan->rs_dir = dir;
689
691 if (BufferIsValid(scan->rs_cbuf))
693}
694
695/*
696 * heapgettup_initial_block - return the first BlockNumber to scan
697 *
698 * Returns InvalidBlockNumber when there are no blocks to scan. This can
699 * occur with empty tables and in parallel scans when parallel workers get all
700 * of the pages before we can get a chance to get our first page.
701 */
704{
705 Assert(!scan->rs_inited);
706 Assert(scan->rs_base.rs_parallel == NULL);
707
708 /* When there are no pages to scan, return InvalidBlockNumber */
709 if (scan->rs_nblocks == 0 || scan->rs_numblocks == 0)
710 return InvalidBlockNumber;
711
712 if (ScanDirectionIsForward(dir))
713 {
714 return scan->rs_startblock;
715 }
716 else
717 {
718 /*
719 * Disable reporting to syncscan logic in a backwards scan; it's not
720 * very likely anyone else is doing the same thing at the same time,
721 * and much more likely that we'll just bollix things for forward
722 * scanners.
723 */
724 scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
725
726 /*
727 * Start from last page of the scan. Ensure we take into account
728 * rs_numblocks if it's been adjusted by heap_setscanlimits().
729 */
730 if (scan->rs_numblocks != InvalidBlockNumber)
731 return (scan->rs_startblock + scan->rs_numblocks - 1) % scan->rs_nblocks;
732
733 if (scan->rs_startblock > 0)
734 return scan->rs_startblock - 1;
735
736 return scan->rs_nblocks - 1;
737 }
738}
739
740
741/*
742 * heapgettup_start_page - helper function for heapgettup()
743 *
744 * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
745 * to the number of tuples on this page. Also set *lineoff to the first
746 * offset to scan with forward scans getting the first offset and backward
747 * getting the final offset on the page.
748 */
749static Page
751 OffsetNumber *lineoff)
752{
753 Page page;
754
755 Assert(scan->rs_inited);
757
758 /* Caller is responsible for ensuring buffer is locked if needed */
759 page = BufferGetPage(scan->rs_cbuf);
760
761 *linesleft = PageGetMaxOffsetNumber(page) - FirstOffsetNumber + 1;
762
763 if (ScanDirectionIsForward(dir))
764 *lineoff = FirstOffsetNumber;
765 else
766 *lineoff = (OffsetNumber) (*linesleft);
767
768 /* lineoff now references the physically previous or next tid */
769 return page;
770}
771
772
773/*
774 * heapgettup_continue_page - helper function for heapgettup()
775 *
776 * Return the next page to scan based on the scan->rs_cbuf and set *linesleft
777 * to the number of tuples left to scan on this page. Also set *lineoff to
778 * the next offset to scan according to the ScanDirection in 'dir'.
779 */
780static inline Page
782 OffsetNumber *lineoff)
783{
784 Page page;
785
786 Assert(scan->rs_inited);
788
789 /* Caller is responsible for ensuring buffer is locked if needed */
790 page = BufferGetPage(scan->rs_cbuf);
791
792 if (ScanDirectionIsForward(dir))
793 {
794 *lineoff = OffsetNumberNext(scan->rs_coffset);
795 *linesleft = PageGetMaxOffsetNumber(page) - (*lineoff) + 1;
796 }
797 else
798 {
799 /*
800 * The previous returned tuple may have been vacuumed since the
801 * previous scan when we use a non-MVCC snapshot, so we must
802 * re-establish the lineoff <= PageGetMaxOffsetNumber(page) invariant
803 */
804 *lineoff = Min(PageGetMaxOffsetNumber(page), OffsetNumberPrev(scan->rs_coffset));
805 *linesleft = *lineoff;
806 }
807
808 /* lineoff now references the physically previous or next tid */
809 return page;
810}
811
812/*
813 * heapgettup_advance_block - helper for heap_fetch_next_buffer()
814 *
815 * Given the current block number, the scan direction, and various information
816 * contained in the scan descriptor, calculate the BlockNumber to scan next
817 * and return it. If there are no further blocks to scan, return
818 * InvalidBlockNumber to indicate this fact to the caller.
819 *
820 * This should not be called to determine the initial block number -- only for
821 * subsequent blocks.
822 *
823 * This also adjusts rs_numblocks when a limit has been imposed by
824 * heap_setscanlimits().
825 */
826static inline BlockNumber
828{
829 Assert(scan->rs_base.rs_parallel == NULL);
830
832 {
833 block++;
834
835 /* wrap back to the start of the heap */
836 if (block >= scan->rs_nblocks)
837 block = 0;
838
839 /*
840 * Report our new scan position for synchronization purposes. We don't
841 * do that when moving backwards, however. That would just mess up any
842 * other forward-moving scanners.
843 *
844 * Note: we do this before checking for end of scan so that the final
845 * state of the position hint is back at the start of the rel. That's
846 * not strictly necessary, but otherwise when you run the same query
847 * multiple times the starting position would shift a little bit
848 * backwards on every invocation, which is confusing. We don't
849 * guarantee any specific ordering in general, though.
850 */
851 if (scan->rs_base.rs_flags & SO_ALLOW_SYNC)
852 ss_report_location(scan->rs_base.rs_rd, block);
853
854 /* we're done if we're back at where we started */
855 if (block == scan->rs_startblock)
856 return InvalidBlockNumber;
857
858 /* check if the limit imposed by heap_setscanlimits() is met */
859 if (scan->rs_numblocks != InvalidBlockNumber)
860 {
861 if (--scan->rs_numblocks == 0)
862 return InvalidBlockNumber;
863 }
864
865 return block;
866 }
867 else
868 {
869 /* we're done if the last block is the start position */
870 if (block == scan->rs_startblock)
871 return InvalidBlockNumber;
872
873 /* check if the limit imposed by heap_setscanlimits() is met */
874 if (scan->rs_numblocks != InvalidBlockNumber)
875 {
876 if (--scan->rs_numblocks == 0)
877 return InvalidBlockNumber;
878 }
879
880 /* wrap to the end of the heap when the last page was page 0 */
881 if (block == 0)
882 block = scan->rs_nblocks;
883
884 block--;
885
886 return block;
887 }
888}
889
890/* ----------------
891 * heapgettup - fetch next heap tuple
892 *
893 * Initialize the scan if not already done; then advance to the next
894 * tuple as indicated by "dir"; return the next tuple in scan->rs_ctup,
895 * or set scan->rs_ctup.t_data = NULL if no more tuples.
896 *
897 * Note: the reason nkeys/key are passed separately, even though they are
898 * kept in the scan descriptor, is that the caller may not want us to check
899 * the scankeys.
900 *
901 * Note: when we fall off the end of the scan in either direction, we
902 * reset rs_inited. This means that a further request with the same
903 * scan direction will restart the scan, which is a bit odd, but a
904 * request with the opposite scan direction will start a fresh scan
905 * in the proper direction. The latter is required behavior for cursors,
906 * while the former case is generally undefined behavior in Postgres
907 * so we don't care too much.
908 * ----------------
909 */
910static void
912 ScanDirection dir,
913 int nkeys,
914 ScanKey key)
915{
916 HeapTuple tuple = &(scan->rs_ctup);
917 Page page;
918 OffsetNumber lineoff;
919 int linesleft;
920
921 if (likely(scan->rs_inited))
922 {
923 /* continue from previously returned page/tuple */
925 page = heapgettup_continue_page(scan, dir, &linesleft, &lineoff);
926 goto continue_page;
927 }
928
929 /*
930 * advance the scan until we find a qualifying tuple or run out of stuff
931 * to scan
932 */
933 while (true)
934 {
935 heap_fetch_next_buffer(scan, dir);
936
937 /* did we run out of blocks to scan? */
938 if (!BufferIsValid(scan->rs_cbuf))
939 break;
940
942
944 page = heapgettup_start_page(scan, dir, &linesleft, &lineoff);
945continue_page:
946
947 /*
948 * Only continue scanning the page while we have lines left.
949 *
950 * Note that this protects us from accessing line pointers past
951 * PageGetMaxOffsetNumber(); both for forward scans when we resume the
952 * table scan, and for when we start scanning a new page.
953 */
954 for (; linesleft > 0; linesleft--, lineoff += dir)
955 {
956 bool visible;
957 ItemId lpp = PageGetItemId(page, lineoff);
958
959 if (!ItemIdIsNormal(lpp))
960 continue;
961
962 tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
963 tuple->t_len = ItemIdGetLength(lpp);
964 ItemPointerSet(&(tuple->t_self), scan->rs_cblock, lineoff);
965
966 visible = HeapTupleSatisfiesVisibility(tuple,
967 scan->rs_base.rs_snapshot,
968 scan->rs_cbuf);
969
971 tuple, scan->rs_cbuf,
972 scan->rs_base.rs_snapshot);
973
974 /* skip tuples not visible to this snapshot */
975 if (!visible)
976 continue;
977
978 /* skip any tuples that don't match the scan key */
979 if (key != NULL &&
981 nkeys, key))
982 continue;
983
985 scan->rs_coffset = lineoff;
986 return;
987 }
988
989 /*
990 * if we get here, it means we've exhausted the items on this page and
991 * it's time to move to the next.
992 */
994 }
995
996 /* end of scan */
997 if (BufferIsValid(scan->rs_cbuf))
998 ReleaseBuffer(scan->rs_cbuf);
999
1000 scan->rs_cbuf = InvalidBuffer;
1003 tuple->t_data = NULL;
1004 scan->rs_inited = false;
1005}
1006
1007/* ----------------
1008 * heapgettup_pagemode - fetch next heap tuple in page-at-a-time mode
1009 *
1010 * Same API as heapgettup, but used in page-at-a-time mode
1011 *
1012 * The internal logic is much the same as heapgettup's too, but there are some
1013 * differences: we do not take the buffer content lock (that only needs to
1014 * happen inside heap_prepare_pagescan), and we iterate through just the
1015 * tuples listed in rs_vistuples[] rather than all tuples on the page. Notice
1016 * that lineindex is 0-based, where the corresponding loop variable lineoff in
1017 * heapgettup is 1-based.
1018 * ----------------
1019 */
1020static void
1022 ScanDirection dir,
1023 int nkeys,
1024 ScanKey key)
1025{
1026 HeapTuple tuple = &(scan->rs_ctup);
1027 Page page;
1028 uint32 lineindex;
1029 uint32 linesleft;
1030
1031 if (likely(scan->rs_inited))
1032 {
1033 /* continue from previously returned page/tuple */
1034 page = BufferGetPage(scan->rs_cbuf);
1035
1036 lineindex = scan->rs_cindex + dir;
1037 if (ScanDirectionIsForward(dir))
1038 linesleft = scan->rs_ntuples - lineindex;
1039 else
1040 linesleft = scan->rs_cindex;
1041 /* lineindex now references the next or previous visible tid */
1042
1043 goto continue_page;
1044 }
1045
1046 /*
1047 * advance the scan until we find a qualifying tuple or run out of stuff
1048 * to scan
1049 */
1050 while (true)
1051 {
1052 heap_fetch_next_buffer(scan, dir);
1053
1054 /* did we run out of blocks to scan? */
1055 if (!BufferIsValid(scan->rs_cbuf))
1056 break;
1057
1059
1060 /* prune the page and determine visible tuple offsets */
1062 page = BufferGetPage(scan->rs_cbuf);
1063 linesleft = scan->rs_ntuples;
1064 lineindex = ScanDirectionIsForward(dir) ? 0 : linesleft - 1;
1065
1066 /* block is the same for all tuples, set it once outside the loop */
1067 ItemPointerSetBlockNumber(&tuple->t_self, scan->rs_cblock);
1068
1069 /* lineindex now references the next or previous visible tid */
1070continue_page:
1071
1072 for (; linesleft > 0; linesleft--, lineindex += dir)
1073 {
1074 ItemId lpp;
1075 OffsetNumber lineoff;
1076
1077 Assert(lineindex <= scan->rs_ntuples);
1078 lineoff = scan->rs_vistuples[lineindex];
1079 lpp = PageGetItemId(page, lineoff);
1080 Assert(ItemIdIsNormal(lpp));
1081
1082 tuple->t_data = (HeapTupleHeader) PageGetItem(page, lpp);
1083 tuple->t_len = ItemIdGetLength(lpp);
1084 ItemPointerSetOffsetNumber(&tuple->t_self, lineoff);
1085
1086 /* skip any tuples that don't match the scan key */
1087 if (key != NULL &&
1088 !HeapKeyTest(tuple, RelationGetDescr(scan->rs_base.rs_rd),
1089 nkeys, key))
1090 continue;
1091
1092 scan->rs_cindex = lineindex;
1093 return;
1094 }
1095 }
1096
1097 /* end of scan */
1098 if (BufferIsValid(scan->rs_cbuf))
1099 ReleaseBuffer(scan->rs_cbuf);
1100 scan->rs_cbuf = InvalidBuffer;
1103 tuple->t_data = NULL;
1104 scan->rs_inited = false;
1105}
1106
1107
1108/* ----------------------------------------------------------------
1109 * heap access method interface
1110 * ----------------------------------------------------------------
1111 */
1112
1113
1116 int nkeys, ScanKey key,
1117 ParallelTableScanDesc parallel_scan,
1118 uint32 flags)
1119{
1120 HeapScanDesc scan;
1121
1122 /*
1123 * increment relation ref count while scanning relation
1124 *
1125 * This is just to make really sure the relcache entry won't go away while
1126 * the scan has a pointer to it. Caller should be holding the rel open
1127 * anyway, so this is redundant in all normal scenarios...
1128 */
1130
1131 /*
1132 * allocate and initialize scan descriptor
1133 */
1134 if (flags & SO_TYPE_BITMAPSCAN)
1135 {
1137
1138 /*
1139 * Bitmap Heap scans do not have any fields that a normal Heap Scan
1140 * does not have, so no special initializations required here.
1141 */
1142 scan = (HeapScanDesc) bscan;
1143 }
1144 else
1145 scan = (HeapScanDesc) palloc(sizeof(HeapScanDescData));
1146
1147 scan->rs_base.rs_rd = relation;
1148 scan->rs_base.rs_snapshot = snapshot;
1149 scan->rs_base.rs_nkeys = nkeys;
1150 scan->rs_base.rs_flags = flags;
1151 scan->rs_base.rs_parallel = parallel_scan;
1152 scan->rs_strategy = NULL; /* set in initscan */
1153 scan->rs_cbuf = InvalidBuffer;
1154
1155 /*
1156 * Disable page-at-a-time mode if it's not a MVCC-safe snapshot.
1157 */
1158 if (!(snapshot && IsMVCCSnapshot(snapshot)))
1159 scan->rs_base.rs_flags &= ~SO_ALLOW_PAGEMODE;
1160
1161 /* Check that a historic snapshot is not used for non-catalog tables */
1162 if (snapshot &&
1163 IsHistoricMVCCSnapshot(snapshot) &&
1165 {
1166 ereport(ERROR,
1167 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
1168 errmsg("cannot query non-catalog table \"%s\" during logical decoding",
1169 RelationGetRelationName(relation))));
1170 }
1171
1172 /*
1173 * For seqscan and sample scans in a serializable transaction, acquire a
1174 * predicate lock on the entire relation. This is required not only to
1175 * lock all the matching tuples, but also to conflict with new insertions
1176 * into the table. In an indexscan, we take page locks on the index pages
1177 * covering the range specified in the scan qual, but in a heap scan there
1178 * is nothing more fine-grained to lock. A bitmap scan is a different
1179 * story, there we have already scanned the index and locked the index
1180 * pages covering the predicate. But in that case we still have to lock
1181 * any matching heap tuples. For sample scan we could optimize the locking
1182 * to be at least page-level granularity, but we'd need to add per-tuple
1183 * locking for that.
1184 */
1186 {
1187 /*
1188 * Ensure a missing snapshot is noticed reliably, even if the
1189 * isolation mode means predicate locking isn't performed (and
1190 * therefore the snapshot isn't used here).
1191 */
1192 Assert(snapshot);
1193 PredicateLockRelation(relation, snapshot);
1194 }
1195
1196 /* we only need to set this up once */
1197 scan->rs_ctup.t_tableOid = RelationGetRelid(relation);
1198
1199 /*
1200 * Allocate memory to keep track of page allocation for parallel workers
1201 * when doing a parallel scan.
1202 */
1203 if (parallel_scan != NULL)
1205 else
1206 scan->rs_parallelworkerdata = NULL;
1207
1208 /*
1209 * we do this here instead of in initscan() because heap_rescan also calls
1210 * initscan() and we don't want to allocate memory again
1211 */
1212 if (nkeys > 0)
1213 scan->rs_base.rs_key = (ScanKey) palloc(sizeof(ScanKeyData) * nkeys);
1214 else
1215 scan->rs_base.rs_key = NULL;
1216
1217 initscan(scan, key, false);
1218
1219 scan->rs_read_stream = NULL;
1220
1221 /*
1222 * Set up a read stream for sequential scans and TID range scans. This
1223 * should be done after initscan() because initscan() allocates the
1224 * BufferAccessStrategy object passed to the read stream API.
1225 */
1226 if (scan->rs_base.rs_flags & SO_TYPE_SEQSCAN ||
1228 {
1230
1231 if (scan->rs_base.rs_parallel)
1233 else
1235
1236 /* ---
1237 * It is safe to use batchmode as the only locks taken by `cb`
1238 * are never taken while waiting for IO:
1239 * - SyncScanLock is used in the non-parallel case
1240 * - in the parallel case, only spinlocks and atomics are used
1241 * ---
1242 */
1245 scan->rs_strategy,
1246 scan->rs_base.rs_rd,
1248 cb,
1249 scan,
1250 0);
1251 }
1252 else if (scan->rs_base.rs_flags & SO_TYPE_BITMAPSCAN)
1253 {
1256 scan->rs_strategy,
1257 scan->rs_base.rs_rd,
1260 scan,
1261 sizeof(TBMIterateResult));
1262 }
1263
1264
1265 return (TableScanDesc) scan;
1266}
1267
1268void
1269heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params,
1270 bool allow_strat, bool allow_sync, bool allow_pagemode)
1271{
1272 HeapScanDesc scan = (HeapScanDesc) sscan;
1273
1274 if (set_params)
1275 {
1276 if (allow_strat)
1278 else
1279 scan->rs_base.rs_flags &= ~SO_ALLOW_STRAT;
1280
1281 if (allow_sync)
1283 else
1284 scan->rs_base.rs_flags &= ~SO_ALLOW_SYNC;
1285
1286 if (allow_pagemode && scan->rs_base.rs_snapshot &&
1289 else
1291 }
1292
1293 /*
1294 * unpin scan buffers
1295 */
1296 if (BufferIsValid(scan->rs_cbuf))
1297 {
1298 ReleaseBuffer(scan->rs_cbuf);
1299 scan->rs_cbuf = InvalidBuffer;
1300 }
1301
1302 /*
1303 * SO_TYPE_BITMAPSCAN would be cleaned up here, but it does not hold any
1304 * additional data vs a normal HeapScan
1305 */
1306
1307 /*
1308 * The read stream is reset on rescan. This must be done before
1309 * initscan(), as some state referred to by read_stream_reset() is reset
1310 * in initscan().
1311 */
1312 if (scan->rs_read_stream)
1314
1315 /*
1316 * reinitialize scan descriptor
1317 */
1318 initscan(scan, key, true);
1319}
1320
1321void
1323{
1324 HeapScanDesc scan = (HeapScanDesc) sscan;
1325
1326 /* Note: no locking manipulations needed */
1327
1328 /*
1329 * unpin scan buffers
1330 */
1331 if (BufferIsValid(scan->rs_cbuf))
1332 ReleaseBuffer(scan->rs_cbuf);
1333
1334 /*
1335 * Must free the read stream before freeing the BufferAccessStrategy.
1336 */
1337 if (scan->rs_read_stream)
1339
1340 /*
1341 * decrement relation reference count and free scan descriptor storage
1342 */
1344
1345 if (scan->rs_base.rs_key)
1346 pfree(scan->rs_base.rs_key);
1347
1348 if (scan->rs_strategy != NULL)
1350
1351 if (scan->rs_parallelworkerdata != NULL)
1353
1354 if (scan->rs_base.rs_flags & SO_TEMP_SNAPSHOT)
1356
1357 pfree(scan);
1358}
1359
1362{
1363 HeapScanDesc scan = (HeapScanDesc) sscan;
1364
1365 /*
1366 * This is still widely used directly, without going through table AM, so
1367 * add a safety check. It's possible we should, at a later point,
1368 * downgrade this to an assert. The reason for checking the AM routine,
1369 * rather than the AM oid, is that this allows to write regression tests
1370 * that create another AM reusing the heap handler.
1371 */
1373 ereport(ERROR,
1374 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1375 errmsg_internal("only heap AM is supported")));
1376
1377 /*
1378 * We don't expect direct calls to heap_getnext with valid CheckXidAlive
1379 * for catalog or regular tables. See detailed comments in xact.c where
1380 * these variables are declared. Normally we have such a check at tableam
1381 * level API but this is called from many places so we need to ensure it
1382 * here.
1383 */
1385 elog(ERROR, "unexpected heap_getnext call during logical decoding");
1386
1387 /* Note: no locking manipulations needed */
1388
1390 heapgettup_pagemode(scan, direction,
1391 scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
1392 else
1393 heapgettup(scan, direction,
1394 scan->rs_base.rs_nkeys, scan->rs_base.rs_key);
1395
1396 if (scan->rs_ctup.t_data == NULL)
1397 return NULL;
1398
1399 /*
1400 * if we get here it means we have a new current scan tuple, so point to
1401 * the proper return buffer and return the tuple.
1402 */
1403
1405
1406 return &scan->rs_ctup;
1407}
1408
1409bool
1411{
1412 HeapScanDesc scan = (HeapScanDesc) sscan;
1413
1414 /* Note: no locking manipulations needed */
1415
1416 if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
1417 heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
1418 else
1419 heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
1420
1421 if (scan->rs_ctup.t_data == NULL)
1422 {
1423 ExecClearTuple(slot);
1424 return false;
1425 }
1426
1427 /*
1428 * if we get here it means we have a new current scan tuple, so point to
1429 * the proper return buffer and return the tuple.
1430 */
1431
1433
1434 ExecStoreBufferHeapTuple(&scan->rs_ctup, slot,
1435 scan->rs_cbuf);
1436 return true;
1437}
1438
1439void
1441 ItemPointer maxtid)
1442{
1443 HeapScanDesc scan = (HeapScanDesc) sscan;
1444 BlockNumber startBlk;
1445 BlockNumber numBlks;
1446 ItemPointerData highestItem;
1447 ItemPointerData lowestItem;
1448
1449 /*
1450 * For relations without any pages, we can simply leave the TID range
1451 * unset. There will be no tuples to scan, therefore no tuples outside
1452 * the given TID range.
1453 */
1454 if (scan->rs_nblocks == 0)
1455 return;
1456
1457 /*
1458 * Set up some ItemPointers which point to the first and last possible
1459 * tuples in the heap.
1460 */
1461 ItemPointerSet(&highestItem, scan->rs_nblocks - 1, MaxOffsetNumber);
1462 ItemPointerSet(&lowestItem, 0, FirstOffsetNumber);
1463
1464 /*
1465 * If the given maximum TID is below the highest possible TID in the
1466 * relation, then restrict the range to that, otherwise we scan to the end
1467 * of the relation.
1468 */
1469 if (ItemPointerCompare(maxtid, &highestItem) < 0)
1470 ItemPointerCopy(maxtid, &highestItem);
1471
1472 /*
1473 * If the given minimum TID is above the lowest possible TID in the
1474 * relation, then restrict the range to only scan for TIDs above that.
1475 */
1476 if (ItemPointerCompare(mintid, &lowestItem) > 0)
1477 ItemPointerCopy(mintid, &lowestItem);
1478
1479 /*
1480 * Check for an empty range and protect from would be negative results
1481 * from the numBlks calculation below.
1482 */
1483 if (ItemPointerCompare(&highestItem, &lowestItem) < 0)
1484 {
1485 /* Set an empty range of blocks to scan */
1486 heap_setscanlimits(sscan, 0, 0);
1487 return;
1488 }
1489
1490 /*
1491 * Calculate the first block and the number of blocks we must scan. We
1492 * could be more aggressive here and perform some more validation to try
1493 * and further narrow the scope of blocks to scan by checking if the
1494 * lowestItem has an offset above MaxOffsetNumber. In this case, we could
1495 * advance startBlk by one. Likewise, if highestItem has an offset of 0
1496 * we could scan one fewer blocks. However, such an optimization does not
1497 * seem worth troubling over, currently.
1498 */
1499 startBlk = ItemPointerGetBlockNumberNoCheck(&lowestItem);
1500
1501 numBlks = ItemPointerGetBlockNumberNoCheck(&highestItem) -
1502 ItemPointerGetBlockNumberNoCheck(&lowestItem) + 1;
1503
1504 /* Set the start block and number of blocks to scan */
1505 heap_setscanlimits(sscan, startBlk, numBlks);
1506
1507 /* Finally, set the TID range in sscan */
1508 ItemPointerCopy(&lowestItem, &sscan->st.tidrange.rs_mintid);
1509 ItemPointerCopy(&highestItem, &sscan->st.tidrange.rs_maxtid);
1510}
1511
1512bool
1514 TupleTableSlot *slot)
1515{
1516 HeapScanDesc scan = (HeapScanDesc) sscan;
1517 ItemPointer mintid = &sscan->st.tidrange.rs_mintid;
1518 ItemPointer maxtid = &sscan->st.tidrange.rs_maxtid;
1519
1520 /* Note: no locking manipulations needed */
1521 for (;;)
1522 {
1523 if (sscan->rs_flags & SO_ALLOW_PAGEMODE)
1524 heapgettup_pagemode(scan, direction, sscan->rs_nkeys, sscan->rs_key);
1525 else
1526 heapgettup(scan, direction, sscan->rs_nkeys, sscan->rs_key);
1527
1528 if (scan->rs_ctup.t_data == NULL)
1529 {
1530 ExecClearTuple(slot);
1531 return false;
1532 }
1533
1534 /*
1535 * heap_set_tidrange will have used heap_setscanlimits to limit the
1536 * range of pages we scan to only ones that can contain the TID range
1537 * we're scanning for. Here we must filter out any tuples from these
1538 * pages that are outside of that range.
1539 */
1540 if (ItemPointerCompare(&scan->rs_ctup.t_self, mintid) < 0)
1541 {
1542 ExecClearTuple(slot);
1543
1544 /*
1545 * When scanning backwards, the TIDs will be in descending order.
1546 * Future tuples in this direction will be lower still, so we can
1547 * just return false to indicate there will be no more tuples.
1548 */
1549 if (ScanDirectionIsBackward(direction))
1550 return false;
1551
1552 continue;
1553 }
1554
1555 /*
1556 * Likewise for the final page, we must filter out TIDs greater than
1557 * maxtid.
1558 */
1559 if (ItemPointerCompare(&scan->rs_ctup.t_self, maxtid) > 0)
1560 {
1561 ExecClearTuple(slot);
1562
1563 /*
1564 * When scanning forward, the TIDs will be in ascending order.
1565 * Future tuples in this direction will be higher still, so we can
1566 * just return false to indicate there will be no more tuples.
1567 */
1568 if (ScanDirectionIsForward(direction))
1569 return false;
1570 continue;
1571 }
1572
1573 break;
1574 }
1575
1576 /*
1577 * if we get here it means we have a new current scan tuple, so point to
1578 * the proper return buffer and return the tuple.
1579 */
1581
1582 ExecStoreBufferHeapTuple(&scan->rs_ctup, slot, scan->rs_cbuf);
1583 return true;
1584}
1585
1586/*
1587 * heap_fetch - retrieve tuple with given tid
1588 *
1589 * On entry, tuple->t_self is the TID to fetch. We pin the buffer holding
1590 * the tuple, fill in the remaining fields of *tuple, and check the tuple
1591 * against the specified snapshot.
1592 *
1593 * If successful (tuple found and passes snapshot time qual), then *userbuf
1594 * is set to the buffer holding the tuple and true is returned. The caller
1595 * must unpin the buffer when done with the tuple.
1596 *
1597 * If the tuple is not found (ie, item number references a deleted slot),
1598 * then tuple->t_data is set to NULL, *userbuf is set to InvalidBuffer,
1599 * and false is returned.
1600 *
1601 * If the tuple is found but fails the time qual check, then the behavior
1602 * depends on the keep_buf parameter. If keep_buf is false, the results
1603 * are the same as for the tuple-not-found case. If keep_buf is true,
1604 * then tuple->t_data and *userbuf are returned as for the success case,
1605 * and again the caller must unpin the buffer; but false is returned.
1606 *
1607 * heap_fetch does not follow HOT chains: only the exact TID requested will
1608 * be fetched.
1609 *
1610 * It is somewhat inconsistent that we ereport() on invalid block number but
1611 * return false on invalid item number. There are a couple of reasons though.
1612 * One is that the caller can relatively easily check the block number for
1613 * validity, but cannot check the item number without reading the page
1614 * himself. Another is that when we are following a t_ctid link, we can be
1615 * reasonably confident that the page number is valid (since VACUUM shouldn't
1616 * truncate off the destination page without having killed the referencing
1617 * tuple first), but the item number might well not be good.
1618 */
1619bool
1621 Snapshot snapshot,
1622 HeapTuple tuple,
1623 Buffer *userbuf,
1624 bool keep_buf)
1625{
1626 ItemPointer tid = &(tuple->t_self);
1627 ItemId lp;
1628 Buffer buffer;
1629 Page page;
1630 OffsetNumber offnum;
1631 bool valid;
1632
1633 /*
1634 * Fetch and pin the appropriate page of the relation.
1635 */
1636 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
1637
1638 /*
1639 * Need share lock on buffer to examine tuple commit status.
1640 */
1642 page = BufferGetPage(buffer);
1643
1644 /*
1645 * We'd better check for out-of-range offnum in case of VACUUM since the
1646 * TID was obtained.
1647 */
1648 offnum = ItemPointerGetOffsetNumber(tid);
1649 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
1650 {
1652 ReleaseBuffer(buffer);
1653 *userbuf = InvalidBuffer;
1654 tuple->t_data = NULL;
1655 return false;
1656 }
1657
1658 /*
1659 * get the item line pointer corresponding to the requested tid
1660 */
1661 lp = PageGetItemId(page, offnum);
1662
1663 /*
1664 * Must check for deleted tuple.
1665 */
1666 if (!ItemIdIsNormal(lp))
1667 {
1669 ReleaseBuffer(buffer);
1670 *userbuf = InvalidBuffer;
1671 tuple->t_data = NULL;
1672 return false;
1673 }
1674
1675 /*
1676 * fill in *tuple fields
1677 */
1678 tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
1679 tuple->t_len = ItemIdGetLength(lp);
1680 tuple->t_tableOid = RelationGetRelid(relation);
1681
1682 /*
1683 * check tuple visibility, then release lock
1684 */
1685 valid = HeapTupleSatisfiesVisibility(tuple, snapshot, buffer);
1686
1687 if (valid)
1688 PredicateLockTID(relation, &(tuple->t_self), snapshot,
1690
1691 HeapCheckForSerializableConflictOut(valid, relation, tuple, buffer, snapshot);
1692
1694
1695 if (valid)
1696 {
1697 /*
1698 * All checks passed, so return the tuple as valid. Caller is now
1699 * responsible for releasing the buffer.
1700 */
1701 *userbuf = buffer;
1702
1703 return true;
1704 }
1705
1706 /* Tuple failed time qual, but maybe caller wants to see it anyway. */
1707 if (keep_buf)
1708 *userbuf = buffer;
1709 else
1710 {
1711 ReleaseBuffer(buffer);
1712 *userbuf = InvalidBuffer;
1713 tuple->t_data = NULL;
1714 }
1715
1716 return false;
1717}
1718
1719/*
1720 * heap_hot_search_buffer - search HOT chain for tuple satisfying snapshot
1721 *
1722 * On entry, *tid is the TID of a tuple (either a simple tuple, or the root
1723 * of a HOT chain), and buffer is the buffer holding this tuple. We search
1724 * for the first chain member satisfying the given snapshot. If one is
1725 * found, we update *tid to reference that tuple's offset number, and
1726 * return true. If no match, return false without modifying *tid.
1727 *
1728 * heapTuple is a caller-supplied buffer. When a match is found, we return
1729 * the tuple here, in addition to updating *tid. If no match is found, the
1730 * contents of this buffer on return are undefined.
1731 *
1732 * If all_dead is not NULL, we check non-visible tuples to see if they are
1733 * globally dead; *all_dead is set true if all members of the HOT chain
1734 * are vacuumable, false if not.
1735 *
1736 * Unlike heap_fetch, the caller must already have pin and (at least) share
1737 * lock on the buffer; it is still pinned/locked at exit.
1738 */
1739bool
1741 Snapshot snapshot, HeapTuple heapTuple,
1742 bool *all_dead, bool first_call)
1743{
1744 Page page = BufferGetPage(buffer);
1746 BlockNumber blkno;
1747 OffsetNumber offnum;
1748 bool at_chain_start;
1749 bool valid;
1750 bool skip;
1751 GlobalVisState *vistest = NULL;
1752
1753 /* If this is not the first call, previous call returned a (live!) tuple */
1754 if (all_dead)
1755 *all_dead = first_call;
1756
1757 blkno = ItemPointerGetBlockNumber(tid);
1758 offnum = ItemPointerGetOffsetNumber(tid);
1759 at_chain_start = first_call;
1760 skip = !first_call;
1761
1762 /* XXX: we should assert that a snapshot is pushed or registered */
1764 Assert(BufferGetBlockNumber(buffer) == blkno);
1765
1766 /* Scan through possible multiple members of HOT-chain */
1767 for (;;)
1768 {
1769 ItemId lp;
1770
1771 /* check for bogus TID */
1772 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
1773 break;
1774
1775 lp = PageGetItemId(page, offnum);
1776
1777 /* check for unused, dead, or redirected items */
1778 if (!ItemIdIsNormal(lp))
1779 {
1780 /* We should only see a redirect at start of chain */
1781 if (ItemIdIsRedirected(lp) && at_chain_start)
1782 {
1783 /* Follow the redirect */
1784 offnum = ItemIdGetRedirect(lp);
1785 at_chain_start = false;
1786 continue;
1787 }
1788 /* else must be end of chain */
1789 break;
1790 }
1791
1792 /*
1793 * Update heapTuple to point to the element of the HOT chain we're
1794 * currently investigating. Having t_self set correctly is important
1795 * because the SSI checks and the *Satisfies routine for historical
1796 * MVCC snapshots need the correct tid to decide about the visibility.
1797 */
1798 heapTuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
1799 heapTuple->t_len = ItemIdGetLength(lp);
1800 heapTuple->t_tableOid = RelationGetRelid(relation);
1801 ItemPointerSet(&heapTuple->t_self, blkno, offnum);
1802
1803 /*
1804 * Shouldn't see a HEAP_ONLY tuple at chain start.
1805 */
1806 if (at_chain_start && HeapTupleIsHeapOnly(heapTuple))
1807 break;
1808
1809 /*
1810 * The xmin should match the previous xmax value, else chain is
1811 * broken.
1812 */
1813 if (TransactionIdIsValid(prev_xmax) &&
1814 !TransactionIdEquals(prev_xmax,
1815 HeapTupleHeaderGetXmin(heapTuple->t_data)))
1816 break;
1817
1818 /*
1819 * When first_call is true (and thus, skip is initially false) we'll
1820 * return the first tuple we find. But on later passes, heapTuple
1821 * will initially be pointing to the tuple we returned last time.
1822 * Returning it again would be incorrect (and would loop forever), so
1823 * we skip it and return the next match we find.
1824 */
1825 if (!skip)
1826 {
1827 /* If it's visible per the snapshot, we must return it */
1828 valid = HeapTupleSatisfiesVisibility(heapTuple, snapshot, buffer);
1829 HeapCheckForSerializableConflictOut(valid, relation, heapTuple,
1830 buffer, snapshot);
1831
1832 if (valid)
1833 {
1834 ItemPointerSetOffsetNumber(tid, offnum);
1835 PredicateLockTID(relation, &heapTuple->t_self, snapshot,
1836 HeapTupleHeaderGetXmin(heapTuple->t_data));
1837 if (all_dead)
1838 *all_dead = false;
1839 return true;
1840 }
1841 }
1842 skip = false;
1843
1844 /*
1845 * If we can't see it, maybe no one else can either. At caller
1846 * request, check whether all chain members are dead to all
1847 * transactions.
1848 *
1849 * Note: if you change the criterion here for what is "dead", fix the
1850 * planner's get_actual_variable_range() function to match.
1851 */
1852 if (all_dead && *all_dead)
1853 {
1854 if (!vistest)
1855 vistest = GlobalVisTestFor(relation);
1856
1857 if (!HeapTupleIsSurelyDead(heapTuple, vistest))
1858 *all_dead = false;
1859 }
1860
1861 /*
1862 * Check to see if HOT chain continues past this tuple; if so fetch
1863 * the next offnum and loop around.
1864 */
1865 if (HeapTupleIsHotUpdated(heapTuple))
1866 {
1868 blkno);
1869 offnum = ItemPointerGetOffsetNumber(&heapTuple->t_data->t_ctid);
1870 at_chain_start = false;
1871 prev_xmax = HeapTupleHeaderGetUpdateXid(heapTuple->t_data);
1872 }
1873 else
1874 break; /* end of chain */
1875 }
1876
1877 return false;
1878}
1879
1880/*
1881 * heap_get_latest_tid - get the latest tid of a specified tuple
1882 *
1883 * Actually, this gets the latest version that is visible according to the
1884 * scan's snapshot. Create a scan using SnapshotDirty to get the very latest,
1885 * possibly uncommitted version.
1886 *
1887 * *tid is both an input and an output parameter: it is updated to
1888 * show the latest version of the row. Note that it will not be changed
1889 * if no version of the row passes the snapshot test.
1890 */
1891void
1893 ItemPointer tid)
1894{
1895 Relation relation = sscan->rs_rd;
1896 Snapshot snapshot = sscan->rs_snapshot;
1897 ItemPointerData ctid;
1898 TransactionId priorXmax;
1899
1900 /*
1901 * table_tuple_get_latest_tid() verified that the passed in tid is valid.
1902 * Assume that t_ctid links are valid however - there shouldn't be invalid
1903 * ones in the table.
1904 */
1906
1907 /*
1908 * Loop to chase down t_ctid links. At top of loop, ctid is the tuple we
1909 * need to examine, and *tid is the TID we will return if ctid turns out
1910 * to be bogus.
1911 *
1912 * Note that we will loop until we reach the end of the t_ctid chain.
1913 * Depending on the snapshot passed, there might be at most one visible
1914 * version of the row, but we don't try to optimize for that.
1915 */
1916 ctid = *tid;
1917 priorXmax = InvalidTransactionId; /* cannot check first XMIN */
1918 for (;;)
1919 {
1920 Buffer buffer;
1921 Page page;
1922 OffsetNumber offnum;
1923 ItemId lp;
1924 HeapTupleData tp;
1925 bool valid;
1926
1927 /*
1928 * Read, pin, and lock the page.
1929 */
1930 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(&ctid));
1932 page = BufferGetPage(buffer);
1933
1934 /*
1935 * Check for bogus item number. This is not treated as an error
1936 * condition because it can happen while following a t_ctid link. We
1937 * just assume that the prior tid is OK and return it unchanged.
1938 */
1939 offnum = ItemPointerGetOffsetNumber(&ctid);
1940 if (offnum < FirstOffsetNumber || offnum > PageGetMaxOffsetNumber(page))
1941 {
1942 UnlockReleaseBuffer(buffer);
1943 break;
1944 }
1945 lp = PageGetItemId(page, offnum);
1946 if (!ItemIdIsNormal(lp))
1947 {
1948 UnlockReleaseBuffer(buffer);
1949 break;
1950 }
1951
1952 /* OK to access the tuple */
1953 tp.t_self = ctid;
1954 tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
1955 tp.t_len = ItemIdGetLength(lp);
1956 tp.t_tableOid = RelationGetRelid(relation);
1957
1958 /*
1959 * After following a t_ctid link, we might arrive at an unrelated
1960 * tuple. Check for XMIN match.
1961 */
1962 if (TransactionIdIsValid(priorXmax) &&
1964 {
1965 UnlockReleaseBuffer(buffer);
1966 break;
1967 }
1968
1969 /*
1970 * Check tuple visibility; if visible, set it as the new result
1971 * candidate.
1972 */
1973 valid = HeapTupleSatisfiesVisibility(&tp, snapshot, buffer);
1974 HeapCheckForSerializableConflictOut(valid, relation, &tp, buffer, snapshot);
1975 if (valid)
1976 *tid = ctid;
1977
1978 /*
1979 * If there's a valid t_ctid link, follow it, else we're done.
1980 */
1981 if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
1985 {
1986 UnlockReleaseBuffer(buffer);
1987 break;
1988 }
1989
1990 ctid = tp.t_data->t_ctid;
1991 priorXmax = HeapTupleHeaderGetUpdateXid(tp.t_data);
1992 UnlockReleaseBuffer(buffer);
1993 } /* end of loop */
1994}
1995
1996
1997/*
1998 * UpdateXmaxHintBits - update tuple hint bits after xmax transaction ends
1999 *
2000 * This is called after we have waited for the XMAX transaction to terminate.
2001 * If the transaction aborted, we guarantee the XMAX_INVALID hint bit will
2002 * be set on exit. If the transaction committed, we set the XMAX_COMMITTED
2003 * hint bit if possible --- but beware that that may not yet be possible,
2004 * if the transaction committed asynchronously.
2005 *
2006 * Note that if the transaction was a locker only, we set HEAP_XMAX_INVALID
2007 * even if it commits.
2008 *
2009 * Hence callers should look only at XMAX_INVALID.
2010 *
2011 * Note this is not allowed for tuples whose xmax is a multixact.
2012 */
2013static void
2015{
2018
2020 {
2021 if (!HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask) &&
2024 xid);
2025 else
2028 }
2029}
2030
2031
2032/*
2033 * GetBulkInsertState - prepare status object for a bulk insert
2034 */
2037{
2038 BulkInsertState bistate;
2039
2040 bistate = (BulkInsertState) palloc(sizeof(BulkInsertStateData));
2042 bistate->current_buf = InvalidBuffer;
2043 bistate->next_free = InvalidBlockNumber;
2044 bistate->last_free = InvalidBlockNumber;
2045 bistate->already_extended_by = 0;
2046 return bistate;
2047}
2048
2049/*
2050 * FreeBulkInsertState - clean up after finishing a bulk insert
2051 */
2052void
2054{
2055 if (bistate->current_buf != InvalidBuffer)
2056 ReleaseBuffer(bistate->current_buf);
2057 FreeAccessStrategy(bistate->strategy);
2058 pfree(bistate);
2059}
2060
2061/*
2062 * ReleaseBulkInsertStatePin - release a buffer currently held in bistate
2063 */
2064void
2066{
2067 if (bistate->current_buf != InvalidBuffer)
2068 ReleaseBuffer(bistate->current_buf);
2069 bistate->current_buf = InvalidBuffer;
2070
2071 /*
2072 * Despite the name, we also reset bulk relation extension state.
2073 * Otherwise we can end up erroring out due to looking for free space in
2074 * ->next_free of one partition, even though ->next_free was set when
2075 * extending another partition. It could obviously also be bad for
2076 * efficiency to look at existing blocks at offsets from another
2077 * partition, even if we don't error out.
2078 */
2079 bistate->next_free = InvalidBlockNumber;
2080 bistate->last_free = InvalidBlockNumber;
2081}
2082
2083
2084/*
2085 * heap_insert - insert tuple into a heap
2086 *
2087 * The new tuple is stamped with current transaction ID and the specified
2088 * command ID.
2089 *
2090 * See table_tuple_insert for comments about most of the input flags, except
2091 * that this routine directly takes a tuple rather than a slot.
2092 *
2093 * There's corresponding HEAP_INSERT_ options to all the TABLE_INSERT_
2094 * options, and there additionally is HEAP_INSERT_SPECULATIVE which is used to
2095 * implement table_tuple_insert_speculative().
2096 *
2097 * On return the header fields of *tup are updated to match the stored tuple;
2098 * in particular tup->t_self receives the actual TID where the tuple was
2099 * stored. But note that any toasting of fields within the tuple data is NOT
2100 * reflected into *tup.
2101 */
2102void
2104 int options, BulkInsertState bistate)
2105{
2107 HeapTuple heaptup;
2108 Buffer buffer;
2109 Buffer vmbuffer = InvalidBuffer;
2110 bool all_visible_cleared = false;
2111
2112 /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
2115
2116 AssertHasSnapshotForToast(relation);
2117
2118 /*
2119 * Fill in tuple header fields and toast the tuple if necessary.
2120 *
2121 * Note: below this point, heaptup is the data we actually intend to store
2122 * into the relation; tup is the caller's original untoasted data.
2123 */
2124 heaptup = heap_prepare_insert(relation, tup, xid, cid, options);
2125
2126 /*
2127 * Find buffer to insert this tuple into. If the page is all visible,
2128 * this will also pin the requisite visibility map page.
2129 */
2130 buffer = RelationGetBufferForTuple(relation, heaptup->t_len,
2131 InvalidBuffer, options, bistate,
2132 &vmbuffer, NULL,
2133 0);
2134
2135 /*
2136 * We're about to do the actual insert -- but check for conflict first, to
2137 * avoid possibly having to roll back work we've just done.
2138 *
2139 * This is safe without a recheck as long as there is no possibility of
2140 * another process scanning the page between this check and the insert
2141 * being visible to the scan (i.e., an exclusive buffer content lock is
2142 * continuously held from this point until the tuple insert is visible).
2143 *
2144 * For a heap insert, we only need to check for table-level SSI locks. Our
2145 * new tuple can't possibly conflict with existing tuple locks, and heap
2146 * page locks are only consolidated versions of tuple locks; they do not
2147 * lock "gaps" as index page locks do. So we don't need to specify a
2148 * buffer when making the call, which makes for a faster check.
2149 */
2151
2152 /* NO EREPORT(ERROR) from here till changes are logged */
2154
2155 RelationPutHeapTuple(relation, buffer, heaptup,
2157
2158 if (PageIsAllVisible(BufferGetPage(buffer)))
2159 {
2160 all_visible_cleared = true;
2162 visibilitymap_clear(relation,
2163 ItemPointerGetBlockNumber(&(heaptup->t_self)),
2164 vmbuffer, VISIBILITYMAP_VALID_BITS);
2165 }
2166
2167 /*
2168 * XXX Should we set PageSetPrunable on this page ?
2169 *
2170 * The inserting transaction may eventually abort thus making this tuple
2171 * DEAD and hence available for pruning. Though we don't want to optimize
2172 * for aborts, if no other tuple in this page is UPDATEd/DELETEd, the
2173 * aborted tuple will never be pruned until next vacuum is triggered.
2174 *
2175 * If you do add PageSetPrunable here, add it in heap_xlog_insert too.
2176 */
2177
2178 MarkBufferDirty(buffer);
2179
2180 /* XLOG stuff */
2181 if (RelationNeedsWAL(relation))
2182 {
2183 xl_heap_insert xlrec;
2184 xl_heap_header xlhdr;
2185 XLogRecPtr recptr;
2186 Page page = BufferGetPage(buffer);
2187 uint8 info = XLOG_HEAP_INSERT;
2188 int bufflags = 0;
2189
2190 /*
2191 * If this is a catalog, we need to transmit combo CIDs to properly
2192 * decode, so log that as well.
2193 */
2195 log_heap_new_cid(relation, heaptup);
2196
2197 /*
2198 * If this is the single and first tuple on page, we can reinit the
2199 * page instead of restoring the whole thing. Set flag, and hide
2200 * buffer references from XLogInsert.
2201 */
2204 {
2205 info |= XLOG_HEAP_INIT_PAGE;
2206 bufflags |= REGBUF_WILL_INIT;
2207 }
2208
2209 xlrec.offnum = ItemPointerGetOffsetNumber(&heaptup->t_self);
2210 xlrec.flags = 0;
2211 if (all_visible_cleared)
2216
2217 /*
2218 * For logical decoding, we need the tuple even if we're doing a full
2219 * page write, so make sure it's included even if we take a full-page
2220 * image. (XXX We could alternatively store a pointer into the FPW).
2221 */
2222 if (RelationIsLogicallyLogged(relation) &&
2224 {
2226 bufflags |= REGBUF_KEEP_DATA;
2227
2228 if (IsToastRelation(relation))
2230 }
2231
2234
2235 xlhdr.t_infomask2 = heaptup->t_data->t_infomask2;
2236 xlhdr.t_infomask = heaptup->t_data->t_infomask;
2237 xlhdr.t_hoff = heaptup->t_data->t_hoff;
2238
2239 /*
2240 * note we mark xlhdr as belonging to buffer; if XLogInsert decides to
2241 * write the whole page to the xlog, we don't need to store
2242 * xl_heap_header in the xlog.
2243 */
2244 XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
2246 /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
2248 (char *) heaptup->t_data + SizeofHeapTupleHeader,
2249 heaptup->t_len - SizeofHeapTupleHeader);
2250
2251 /* filtering by origin on a row level is much more efficient */
2253
2254 recptr = XLogInsert(RM_HEAP_ID, info);
2255
2256 PageSetLSN(page, recptr);
2257 }
2258
2260
2261 UnlockReleaseBuffer(buffer);
2262 if (vmbuffer != InvalidBuffer)
2263 ReleaseBuffer(vmbuffer);
2264
2265 /*
2266 * If tuple is cacheable, mark it for invalidation from the caches in case
2267 * we abort. Note it is OK to do this after releasing the buffer, because
2268 * the heaptup data structure is all in local memory, not in the shared
2269 * buffer.
2270 */
2271 CacheInvalidateHeapTuple(relation, heaptup, NULL);
2272
2273 /* Note: speculative insertions are counted too, even if aborted later */
2274 pgstat_count_heap_insert(relation, 1);
2275
2276 /*
2277 * If heaptup is a private copy, release it. Don't forget to copy t_self
2278 * back to the caller's image, too.
2279 */
2280 if (heaptup != tup)
2281 {
2282 tup->t_self = heaptup->t_self;
2283 heap_freetuple(heaptup);
2284 }
2285}
2286
2287/*
2288 * Subroutine for heap_insert(). Prepares a tuple for insertion. This sets the
2289 * tuple header fields and toasts the tuple if necessary. Returns a toasted
2290 * version of the tuple if it was toasted, or the original tuple if not. Note
2291 * that in any case, the header fields are also set in the original tuple.
2292 */
2293static HeapTuple
2295 CommandId cid, int options)
2296{
2297 /*
2298 * To allow parallel inserts, we need to ensure that they are safe to be
2299 * performed in workers. We have the infrastructure to allow parallel
2300 * inserts in general except for the cases where inserts generate a new
2301 * CommandId (eg. inserts into a table having a foreign key column).
2302 */
2303 if (IsParallelWorker())
2304 ereport(ERROR,
2305 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
2306 errmsg("cannot insert tuples in a parallel worker")));
2307
2308 tup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
2311 HeapTupleHeaderSetXmin(tup->t_data, xid);
2314
2315 HeapTupleHeaderSetCmin(tup->t_data, cid);
2316 HeapTupleHeaderSetXmax(tup->t_data, 0); /* for cleanliness */
2317 tup->t_tableOid = RelationGetRelid(relation);
2318
2319 /*
2320 * If the new tuple is too big for storage or contains already toasted
2321 * out-of-line attributes from some other relation, invoke the toaster.
2322 */
2323 if (relation->rd_rel->relkind != RELKIND_RELATION &&
2324 relation->rd_rel->relkind != RELKIND_MATVIEW)
2325 {
2326 /* toast table entries should never be recursively toasted */
2328 return tup;
2329 }
2330 else if (HeapTupleHasExternal(tup) || tup->t_len > TOAST_TUPLE_THRESHOLD)
2331 return heap_toast_insert_or_update(relation, tup, NULL, options);
2332 else
2333 return tup;
2334}
2335
2336/*
2337 * Helper for heap_multi_insert() that computes the number of entire pages
2338 * that inserting the remaining heaptuples requires. Used to determine how
2339 * much the relation needs to be extended by.
2340 */
2341static int
2342heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
2343{
2344 size_t page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
2345 int npages = 1;
2346
2347 for (int i = done; i < ntuples; i++)
2348 {
2349 size_t tup_sz = sizeof(ItemIdData) + MAXALIGN(heaptuples[i]->t_len);
2350
2351 if (page_avail < tup_sz)
2352 {
2353 npages++;
2354 page_avail = BLCKSZ - SizeOfPageHeaderData - saveFreeSpace;
2355 }
2356 page_avail -= tup_sz;
2357 }
2358
2359 return npages;
2360}
2361
2362/*
2363 * heap_multi_insert - insert multiple tuples into a heap
2364 *
2365 * This is like heap_insert(), but inserts multiple tuples in one operation.
2366 * That's faster than calling heap_insert() in a loop, because when multiple
2367 * tuples can be inserted on a single page, we can write just a single WAL
2368 * record covering all of them, and only need to lock/unlock the page once.
2369 *
2370 * Note: this leaks memory into the current memory context. You can create a
2371 * temporary context before calling this, if that's a problem.
2372 */
2373void
2374heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples,
2375 CommandId cid, int options, BulkInsertState bistate)
2376{
2378 HeapTuple *heaptuples;
2379 int i;
2380 int ndone;
2381 PGAlignedBlock scratch;
2382 Page page;
2383 Buffer vmbuffer = InvalidBuffer;
2384 bool needwal;
2385 Size saveFreeSpace;
2386 bool need_tuple_data = RelationIsLogicallyLogged(relation);
2387 bool need_cids = RelationIsAccessibleInLogicalDecoding(relation);
2388 bool starting_with_empty_page = false;
2389 int npages = 0;
2390 int npages_used = 0;
2391
2392 /* currently not needed (thus unsupported) for heap_multi_insert() */
2394
2395 AssertHasSnapshotForToast(relation);
2396
2397 needwal = RelationNeedsWAL(relation);
2398 saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
2400
2401 /* Toast and set header data in all the slots */
2402 heaptuples = palloc(ntuples * sizeof(HeapTuple));
2403 for (i = 0; i < ntuples; i++)
2404 {
2405 HeapTuple tuple;
2406
2407 tuple = ExecFetchSlotHeapTuple(slots[i], true, NULL);
2408 slots[i]->tts_tableOid = RelationGetRelid(relation);
2409 tuple->t_tableOid = slots[i]->tts_tableOid;
2410 heaptuples[i] = heap_prepare_insert(relation, tuple, xid, cid,
2411 options);
2412 }
2413
2414 /*
2415 * We're about to do the actual inserts -- but check for conflict first,
2416 * to minimize the possibility of having to roll back work we've just
2417 * done.
2418 *
2419 * A check here does not definitively prevent a serialization anomaly;
2420 * that check MUST be done at least past the point of acquiring an
2421 * exclusive buffer content lock on every buffer that will be affected,
2422 * and MAY be done after all inserts are reflected in the buffers and
2423 * those locks are released; otherwise there is a race condition. Since
2424 * multiple buffers can be locked and unlocked in the loop below, and it
2425 * would not be feasible to identify and lock all of those buffers before
2426 * the loop, we must do a final check at the end.
2427 *
2428 * The check here could be omitted with no loss of correctness; it is
2429 * present strictly as an optimization.
2430 *
2431 * For heap inserts, we only need to check for table-level SSI locks. Our
2432 * new tuples can't possibly conflict with existing tuple locks, and heap
2433 * page locks are only consolidated versions of tuple locks; they do not
2434 * lock "gaps" as index page locks do. So we don't need to specify a
2435 * buffer when making the call, which makes for a faster check.
2436 */
2438
2439 ndone = 0;
2440 while (ndone < ntuples)
2441 {
2442 Buffer buffer;
2443 bool all_visible_cleared = false;
2444 bool all_frozen_set = false;
2445 int nthispage;
2446
2448
2449 /*
2450 * Compute number of pages needed to fit the to-be-inserted tuples in
2451 * the worst case. This will be used to determine how much to extend
2452 * the relation by in RelationGetBufferForTuple(), if needed. If we
2453 * filled a prior page from scratch, we can just update our last
2454 * computation, but if we started with a partially filled page,
2455 * recompute from scratch, the number of potentially required pages
2456 * can vary due to tuples needing to fit onto the page, page headers
2457 * etc.
2458 */
2459 if (ndone == 0 || !starting_with_empty_page)
2460 {
2461 npages = heap_multi_insert_pages(heaptuples, ndone, ntuples,
2462 saveFreeSpace);
2463 npages_used = 0;
2464 }
2465 else
2466 npages_used++;
2467
2468 /*
2469 * Find buffer where at least the next tuple will fit. If the page is
2470 * all-visible, this will also pin the requisite visibility map page.
2471 *
2472 * Also pin visibility map page if COPY FREEZE inserts tuples into an
2473 * empty page. See all_frozen_set below.
2474 */
2475 buffer = RelationGetBufferForTuple(relation, heaptuples[ndone]->t_len,
2476 InvalidBuffer, options, bistate,
2477 &vmbuffer, NULL,
2478 npages - npages_used);
2479 page = BufferGetPage(buffer);
2480
2481 starting_with_empty_page = PageGetMaxOffsetNumber(page) == 0;
2482
2483 if (starting_with_empty_page && (options & HEAP_INSERT_FROZEN))
2484 {
2485 all_frozen_set = true;
2486 /* Lock the vmbuffer before entering the critical section */
2488 }
2489
2490 /* NO EREPORT(ERROR) from here till changes are logged */
2492
2493 /*
2494 * RelationGetBufferForTuple has ensured that the first tuple fits.
2495 * Put that on the page, and then as many other tuples as fit.
2496 */
2497 RelationPutHeapTuple(relation, buffer, heaptuples[ndone], false);
2498
2499 /*
2500 * For logical decoding we need combo CIDs to properly decode the
2501 * catalog.
2502 */
2503 if (needwal && need_cids)
2504 log_heap_new_cid(relation, heaptuples[ndone]);
2505
2506 for (nthispage = 1; ndone + nthispage < ntuples; nthispage++)
2507 {
2508 HeapTuple heaptup = heaptuples[ndone + nthispage];
2509
2510 if (PageGetHeapFreeSpace(page) < MAXALIGN(heaptup->t_len) + saveFreeSpace)
2511 break;
2512
2513 RelationPutHeapTuple(relation, buffer, heaptup, false);
2514
2515 /*
2516 * For logical decoding we need combo CIDs to properly decode the
2517 * catalog.
2518 */
2519 if (needwal && need_cids)
2520 log_heap_new_cid(relation, heaptup);
2521 }
2522
2523 /*
2524 * If the page is all visible, need to clear that, unless we're only
2525 * going to add further frozen rows to it.
2526 *
2527 * If we're only adding already frozen rows to a previously empty
2528 * page, mark it as all-frozen and update the visibility map. We're
2529 * already holding a pin on the vmbuffer.
2530 */
2532 {
2533 all_visible_cleared = true;
2534 PageClearAllVisible(page);
2535 visibilitymap_clear(relation,
2536 BufferGetBlockNumber(buffer),
2537 vmbuffer, VISIBILITYMAP_VALID_BITS);
2538 }
2539 else if (all_frozen_set)
2540 {
2541 PageSetAllVisible(page);
2543 vmbuffer,
2546 relation->rd_locator);
2547 }
2548
2549 /*
2550 * XXX Should we set PageSetPrunable on this page ? See heap_insert()
2551 */
2552
2553 MarkBufferDirty(buffer);
2554
2555 /* XLOG stuff */
2556 if (needwal)
2557 {
2558 XLogRecPtr recptr;
2559 xl_heap_multi_insert *xlrec;
2561 char *tupledata;
2562 int totaldatalen;
2563 char *scratchptr = scratch.data;
2564 bool init;
2565 int bufflags = 0;
2566
2567 /*
2568 * If the page was previously empty, we can reinit the page
2569 * instead of restoring the whole thing.
2570 */
2571 init = starting_with_empty_page;
2572
2573 /* allocate xl_heap_multi_insert struct from the scratch area */
2574 xlrec = (xl_heap_multi_insert *) scratchptr;
2575 scratchptr += SizeOfHeapMultiInsert;
2576
2577 /*
2578 * Allocate offsets array. Unless we're reinitializing the page,
2579 * in that case the tuples are stored in order starting at
2580 * FirstOffsetNumber and we don't need to store the offsets
2581 * explicitly.
2582 */
2583 if (!init)
2584 scratchptr += nthispage * sizeof(OffsetNumber);
2585
2586 /* the rest of the scratch space is used for tuple data */
2587 tupledata = scratchptr;
2588
2589 /* check that the mutually exclusive flags are not both set */
2590 Assert(!(all_visible_cleared && all_frozen_set));
2591
2592 xlrec->flags = 0;
2593 if (all_visible_cleared)
2595
2596 /*
2597 * We don't have to worry about including a conflict xid in the
2598 * WAL record, as HEAP_INSERT_FROZEN intentionally violates
2599 * visibility rules.
2600 */
2601 if (all_frozen_set)
2603
2604 xlrec->ntuples = nthispage;
2605
2606 /*
2607 * Write out an xl_multi_insert_tuple and the tuple data itself
2608 * for each tuple.
2609 */
2610 for (i = 0; i < nthispage; i++)
2611 {
2612 HeapTuple heaptup = heaptuples[ndone + i];
2613 xl_multi_insert_tuple *tuphdr;
2614 int datalen;
2615
2616 if (!init)
2617 xlrec->offsets[i] = ItemPointerGetOffsetNumber(&heaptup->t_self);
2618 /* xl_multi_insert_tuple needs two-byte alignment. */
2619 tuphdr = (xl_multi_insert_tuple *) SHORTALIGN(scratchptr);
2620 scratchptr = ((char *) tuphdr) + SizeOfMultiInsertTuple;
2621
2622 tuphdr->t_infomask2 = heaptup->t_data->t_infomask2;
2623 tuphdr->t_infomask = heaptup->t_data->t_infomask;
2624 tuphdr->t_hoff = heaptup->t_data->t_hoff;
2625
2626 /* write bitmap [+ padding] [+ oid] + data */
2627 datalen = heaptup->t_len - SizeofHeapTupleHeader;
2628 memcpy(scratchptr,
2629 (char *) heaptup->t_data + SizeofHeapTupleHeader,
2630 datalen);
2631 tuphdr->datalen = datalen;
2632 scratchptr += datalen;
2633 }
2634 totaldatalen = scratchptr - tupledata;
2635 Assert((scratchptr - scratch.data) < BLCKSZ);
2636
2637 if (need_tuple_data)
2639
2640 /*
2641 * Signal that this is the last xl_heap_multi_insert record
2642 * emitted by this call to heap_multi_insert(). Needed for logical
2643 * decoding so it knows when to cleanup temporary data.
2644 */
2645 if (ndone + nthispage == ntuples)
2647
2648 if (init)
2649 {
2650 info |= XLOG_HEAP_INIT_PAGE;
2651 bufflags |= REGBUF_WILL_INIT;
2652 }
2653
2654 /*
2655 * If we're doing logical decoding, include the new tuple data
2656 * even if we take a full-page image of the page.
2657 */
2658 if (need_tuple_data)
2659 bufflags |= REGBUF_KEEP_DATA;
2660
2662 XLogRegisterData(xlrec, tupledata - scratch.data);
2663 XLogRegisterBuffer(0, buffer, REGBUF_STANDARD | bufflags);
2664 if (all_frozen_set)
2665 XLogRegisterBuffer(1, vmbuffer, 0);
2666
2667 XLogRegisterBufData(0, tupledata, totaldatalen);
2668
2669 /* filtering by origin on a row level is much more efficient */
2671
2672 recptr = XLogInsert(RM_HEAP2_ID, info);
2673
2674 PageSetLSN(page, recptr);
2675 if (all_frozen_set)
2676 {
2677 Assert(BufferIsDirty(vmbuffer));
2678 PageSetLSN(BufferGetPage(vmbuffer), recptr);
2679 }
2680 }
2681
2683
2684 if (all_frozen_set)
2685 LockBuffer(vmbuffer, BUFFER_LOCK_UNLOCK);
2686
2687 UnlockReleaseBuffer(buffer);
2688 ndone += nthispage;
2689
2690 /*
2691 * NB: Only release vmbuffer after inserting all tuples - it's fairly
2692 * likely that we'll insert into subsequent heap pages that are likely
2693 * to use the same vm page.
2694 */
2695 }
2696
2697 /* We're done with inserting all tuples, so release the last vmbuffer. */
2698 if (vmbuffer != InvalidBuffer)
2699 ReleaseBuffer(vmbuffer);
2700
2701 /*
2702 * We're done with the actual inserts. Check for conflicts again, to
2703 * ensure that all rw-conflicts in to these inserts are detected. Without
2704 * this final check, a sequential scan of the heap may have locked the
2705 * table after the "before" check, missing one opportunity to detect the
2706 * conflict, and then scanned the table before the new tuples were there,
2707 * missing the other chance to detect the conflict.
2708 *
2709 * For heap inserts, we only need to check for table-level SSI locks. Our
2710 * new tuples can't possibly conflict with existing tuple locks, and heap
2711 * page locks are only consolidated versions of tuple locks; they do not
2712 * lock "gaps" as index page locks do. So we don't need to specify a
2713 * buffer when making the call.
2714 */
2716
2717 /*
2718 * If tuples are cacheable, mark them for invalidation from the caches in
2719 * case we abort. Note it is OK to do this after releasing the buffer,
2720 * because the heaptuples data structure is all in local memory, not in
2721 * the shared buffer.
2722 */
2723 if (IsCatalogRelation(relation))
2724 {
2725 for (i = 0; i < ntuples; i++)
2726 CacheInvalidateHeapTuple(relation, heaptuples[i], NULL);
2727 }
2728
2729 /* copy t_self fields back to the caller's slots */
2730 for (i = 0; i < ntuples; i++)
2731 slots[i]->tts_tid = heaptuples[i]->t_self;
2732
2733 pgstat_count_heap_insert(relation, ntuples);
2734}
2735
2736/*
2737 * simple_heap_insert - insert a tuple
2738 *
2739 * Currently, this routine differs from heap_insert only in supplying
2740 * a default command ID and not allowing access to the speedup options.
2741 *
2742 * This should be used rather than using heap_insert directly in most places
2743 * where we are modifying system catalogs.
2744 */
2745void
2747{
2748 heap_insert(relation, tup, GetCurrentCommandId(true), 0, NULL);
2749}
2750
2751/*
2752 * Given infomask/infomask2, compute the bits that must be saved in the
2753 * "infobits" field of xl_heap_delete, xl_heap_update, xl_heap_lock,
2754 * xl_heap_lock_updated WAL records.
2755 *
2756 * See fix_infomask_from_infobits.
2757 */
2758static uint8
2759compute_infobits(uint16 infomask, uint16 infomask2)
2760{
2761 return
2762 ((infomask & HEAP_XMAX_IS_MULTI) != 0 ? XLHL_XMAX_IS_MULTI : 0) |
2763 ((infomask & HEAP_XMAX_LOCK_ONLY) != 0 ? XLHL_XMAX_LOCK_ONLY : 0) |
2764 ((infomask & HEAP_XMAX_EXCL_LOCK) != 0 ? XLHL_XMAX_EXCL_LOCK : 0) |
2765 /* note we ignore HEAP_XMAX_SHR_LOCK here */
2766 ((infomask & HEAP_XMAX_KEYSHR_LOCK) != 0 ? XLHL_XMAX_KEYSHR_LOCK : 0) |
2767 ((infomask2 & HEAP_KEYS_UPDATED) != 0 ?
2768 XLHL_KEYS_UPDATED : 0);
2769}
2770
2771/*
2772 * Given two versions of the same t_infomask for a tuple, compare them and
2773 * return whether the relevant status for a tuple Xmax has changed. This is
2774 * used after a buffer lock has been released and reacquired: we want to ensure
2775 * that the tuple state continues to be the same it was when we previously
2776 * examined it.
2777 *
2778 * Note the Xmax field itself must be compared separately.
2779 */
2780static inline bool
2781xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
2782{
2783 const uint16 interesting =
2785
2786 if ((new_infomask & interesting) != (old_infomask & interesting))
2787 return true;
2788
2789 return false;
2790}
2791
2792/*
2793 * heap_delete - delete a tuple
2794 *
2795 * See table_tuple_delete() for an explanation of the parameters, except that
2796 * this routine directly takes a tuple rather than a slot.
2797 *
2798 * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
2799 * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
2800 * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
2801 * generated by another transaction).
2802 */
2805 CommandId cid, Snapshot crosscheck, bool wait,
2806 TM_FailureData *tmfd, bool changingPart)
2807{
2808 TM_Result result;
2810 ItemId lp;
2811 HeapTupleData tp;
2812 Page page;
2813 BlockNumber block;
2814 Buffer buffer;
2815 Buffer vmbuffer = InvalidBuffer;
2816 TransactionId new_xmax;
2817 uint16 new_infomask,
2818 new_infomask2;
2819 bool have_tuple_lock = false;
2820 bool iscombo;
2821 bool all_visible_cleared = false;
2822 HeapTuple old_key_tuple = NULL; /* replica identity of the tuple */
2823 bool old_key_copied = false;
2824
2826
2827 AssertHasSnapshotForToast(relation);
2828
2829 /*
2830 * Forbid this during a parallel operation, lest it allocate a combo CID.
2831 * Other workers might need that combo CID for visibility checks, and we
2832 * have no provision for broadcasting it to them.
2833 */
2834 if (IsInParallelMode())
2835 ereport(ERROR,
2836 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
2837 errmsg("cannot delete tuples during a parallel operation")));
2838
2839 block = ItemPointerGetBlockNumber(tid);
2840 buffer = ReadBuffer(relation, block);
2841 page = BufferGetPage(buffer);
2842
2843 /*
2844 * Before locking the buffer, pin the visibility map page if it appears to
2845 * be necessary. Since we haven't got the lock yet, someone else might be
2846 * in the middle of changing this, so we'll need to recheck after we have
2847 * the lock.
2848 */
2849 if (PageIsAllVisible(page))
2850 visibilitymap_pin(relation, block, &vmbuffer);
2851
2853
2856
2857 tp.t_tableOid = RelationGetRelid(relation);
2858 tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
2859 tp.t_len = ItemIdGetLength(lp);
2860 tp.t_self = *tid;
2861
2862l1:
2863
2864 /*
2865 * If we didn't pin the visibility map page and the page has become all
2866 * visible while we were busy locking the buffer, we'll have to unlock and
2867 * re-lock, to avoid holding the buffer lock across an I/O. That's a bit
2868 * unfortunate, but hopefully shouldn't happen often.
2869 */
2870 if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
2871 {
2873 visibilitymap_pin(relation, block, &vmbuffer);
2875 }
2876
2877 result = HeapTupleSatisfiesUpdate(&tp, cid, buffer);
2878
2879 if (result == TM_Invisible)
2880 {
2881 UnlockReleaseBuffer(buffer);
2882 ereport(ERROR,
2883 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
2884 errmsg("attempted to delete invisible tuple")));
2885 }
2886 else if (result == TM_BeingModified && wait)
2887 {
2888 TransactionId xwait;
2889 uint16 infomask;
2890
2891 /* must copy state data before unlocking buffer */
2893 infomask = tp.t_data->t_infomask;
2894
2895 /*
2896 * Sleep until concurrent transaction ends -- except when there's a
2897 * single locker and it's our own transaction. Note we don't care
2898 * which lock mode the locker has, because we need the strongest one.
2899 *
2900 * Before sleeping, we need to acquire tuple lock to establish our
2901 * priority for the tuple (see heap_lock_tuple). LockTuple will
2902 * release us when we are next-in-line for the tuple.
2903 *
2904 * If we are forced to "start over" below, we keep the tuple lock;
2905 * this arranges that we stay at the head of the line while rechecking
2906 * tuple state.
2907 */
2908 if (infomask & HEAP_XMAX_IS_MULTI)
2909 {
2910 bool current_is_member = false;
2911
2912 if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
2913 LockTupleExclusive, &current_is_member))
2914 {
2916
2917 /*
2918 * Acquire the lock, if necessary (but skip it when we're
2919 * requesting a lock and already have one; avoids deadlock).
2920 */
2921 if (!current_is_member)
2923 LockWaitBlock, &have_tuple_lock);
2924
2925 /* wait for multixact */
2927 relation, &(tp.t_self), XLTW_Delete,
2928 NULL);
2930
2931 /*
2932 * If xwait had just locked the tuple then some other xact
2933 * could update this tuple before we get to this point. Check
2934 * for xmax change, and start over if so.
2935 *
2936 * We also must start over if we didn't pin the VM page, and
2937 * the page has become all visible.
2938 */
2939 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
2940 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
2942 xwait))
2943 goto l1;
2944 }
2945
2946 /*
2947 * You might think the multixact is necessarily done here, but not
2948 * so: it could have surviving members, namely our own xact or
2949 * other subxacts of this backend. It is legal for us to delete
2950 * the tuple in either case, however (the latter case is
2951 * essentially a situation of upgrading our former shared lock to
2952 * exclusive). We don't bother changing the on-disk hint bits
2953 * since we are about to overwrite the xmax altogether.
2954 */
2955 }
2956 else if (!TransactionIdIsCurrentTransactionId(xwait))
2957 {
2958 /*
2959 * Wait for regular transaction to end; but first, acquire tuple
2960 * lock.
2961 */
2964 LockWaitBlock, &have_tuple_lock);
2965 XactLockTableWait(xwait, relation, &(tp.t_self), XLTW_Delete);
2967
2968 /*
2969 * xwait is done, but if xwait had just locked the tuple then some
2970 * other xact could update this tuple before we get to this point.
2971 * Check for xmax change, and start over if so.
2972 *
2973 * We also must start over if we didn't pin the VM page, and the
2974 * page has become all visible.
2975 */
2976 if ((vmbuffer == InvalidBuffer && PageIsAllVisible(page)) ||
2977 xmax_infomask_changed(tp.t_data->t_infomask, infomask) ||
2979 xwait))
2980 goto l1;
2981
2982 /* Otherwise check if it committed or aborted */
2983 UpdateXmaxHintBits(tp.t_data, buffer, xwait);
2984 }
2985
2986 /*
2987 * We may overwrite if previous xmax aborted, or if it committed but
2988 * only locked the tuple without updating it.
2989 */
2990 if ((tp.t_data->t_infomask & HEAP_XMAX_INVALID) ||
2993 result = TM_Ok;
2994 else if (!ItemPointerEquals(&tp.t_self, &tp.t_data->t_ctid))
2995 result = TM_Updated;
2996 else
2997 result = TM_Deleted;
2998 }
2999
3000 /* sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
3001 if (result != TM_Ok)
3002 {
3003 Assert(result == TM_SelfModified ||
3004 result == TM_Updated ||
3005 result == TM_Deleted ||
3006 result == TM_BeingModified);
3008 Assert(result != TM_Updated ||
3010 }
3011
3012 if (crosscheck != InvalidSnapshot && result == TM_Ok)
3013 {
3014 /* Perform additional check for transaction-snapshot mode RI updates */
3015 if (!HeapTupleSatisfiesVisibility(&tp, crosscheck, buffer))
3016 result = TM_Updated;
3017 }
3018
3019 if (result != TM_Ok)
3020 {
3021 tmfd->ctid = tp.t_data->t_ctid;
3023 if (result == TM_SelfModified)
3025 else
3026 tmfd->cmax = InvalidCommandId;
3027 UnlockReleaseBuffer(buffer);
3028 if (have_tuple_lock)
3030 if (vmbuffer != InvalidBuffer)
3031 ReleaseBuffer(vmbuffer);
3032 return result;
3033 }
3034
3035 /*
3036 * We're about to do the actual delete -- check for conflict first, to
3037 * avoid possibly having to roll back work we've just done.
3038 *
3039 * This is safe without a recheck as long as there is no possibility of
3040 * another process scanning the page between this check and the delete
3041 * being visible to the scan (i.e., an exclusive buffer content lock is
3042 * continuously held from this point until the tuple delete is visible).
3043 */
3045
3046 /* replace cid with a combo CID if necessary */
3047 HeapTupleHeaderAdjustCmax(tp.t_data, &cid, &iscombo);
3048
3049 /*
3050 * Compute replica identity tuple before entering the critical section so
3051 * we don't PANIC upon a memory allocation failure.
3052 */
3053 old_key_tuple = ExtractReplicaIdentity(relation, &tp, true, &old_key_copied);
3054
3055 /*
3056 * If this is the first possibly-multixact-able operation in the current
3057 * transaction, set my per-backend OldestMemberMXactId setting. We can be
3058 * certain that the transaction will never become a member of any older
3059 * MultiXactIds than that. (We have to do this even if we end up just
3060 * using our own TransactionId below, since some other backend could
3061 * incorporate our XID into a MultiXact immediately afterwards.)
3062 */
3064
3067 xid, LockTupleExclusive, true,
3068 &new_xmax, &new_infomask, &new_infomask2);
3069
3071
3072 /*
3073 * If this transaction commits, the tuple will become DEAD sooner or
3074 * later. Set flag that this page is a candidate for pruning once our xid
3075 * falls below the OldestXmin horizon. If the transaction finally aborts,
3076 * the subsequent page pruning will be a no-op and the hint will be
3077 * cleared.
3078 */
3079 PageSetPrunable(page, xid);
3080
3081 if (PageIsAllVisible(page))
3082 {
3083 all_visible_cleared = true;
3084 PageClearAllVisible(page);
3085 visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
3086 vmbuffer, VISIBILITYMAP_VALID_BITS);
3087 }
3088
3089 /* store transaction information of xact deleting the tuple */
3091 tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
3092 tp.t_data->t_infomask |= new_infomask;
3093 tp.t_data->t_infomask2 |= new_infomask2;
3095 HeapTupleHeaderSetXmax(tp.t_data, new_xmax);
3096 HeapTupleHeaderSetCmax(tp.t_data, cid, iscombo);
3097 /* Make sure there is no forward chain link in t_ctid */
3098 tp.t_data->t_ctid = tp.t_self;
3099
3100 /* Signal that this is actually a move into another partition */
3101 if (changingPart)
3103
3104 MarkBufferDirty(buffer);
3105
3106 /*
3107 * XLOG stuff
3108 *
3109 * NB: heap_abort_speculative() uses the same xlog record and replay
3110 * routines.
3111 */
3112 if (RelationNeedsWAL(relation))
3113 {
3114 xl_heap_delete xlrec;
3115 xl_heap_header xlhdr;
3116 XLogRecPtr recptr;
3117
3118 /*
3119 * For logical decode we need combo CIDs to properly decode the
3120 * catalog
3121 */
3123 log_heap_new_cid(relation, &tp);
3124
3125 xlrec.flags = 0;
3126 if (all_visible_cleared)
3128 if (changingPart)
3131 tp.t_data->t_infomask2);
3133 xlrec.xmax = new_xmax;
3134
3135 if (old_key_tuple != NULL)
3136 {
3137 if (relation->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
3139 else
3141 }
3142
3145
3147
3148 /*
3149 * Log replica identity of the deleted tuple if there is one
3150 */
3151 if (old_key_tuple != NULL)
3152 {
3153 xlhdr.t_infomask2 = old_key_tuple->t_data->t_infomask2;
3154 xlhdr.t_infomask = old_key_tuple->t_data->t_infomask;
3155 xlhdr.t_hoff = old_key_tuple->t_data->t_hoff;
3156
3158 XLogRegisterData((char *) old_key_tuple->t_data
3160 old_key_tuple->t_len
3162 }
3163
3164 /* filtering by origin on a row level is much more efficient */
3166
3167 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
3168
3169 PageSetLSN(page, recptr);
3170 }
3171
3173
3175
3176 if (vmbuffer != InvalidBuffer)
3177 ReleaseBuffer(vmbuffer);
3178
3179 /*
3180 * If the tuple has toasted out-of-line attributes, we need to delete
3181 * those items too. We have to do this before releasing the buffer
3182 * because we need to look at the contents of the tuple, but it's OK to
3183 * release the content lock on the buffer first.
3184 */
3185 if (relation->rd_rel->relkind != RELKIND_RELATION &&
3186 relation->rd_rel->relkind != RELKIND_MATVIEW)
3187 {
3188 /* toast table entries should never be recursively toasted */
3190 }
3191 else if (HeapTupleHasExternal(&tp))
3192 heap_toast_delete(relation, &tp, false);
3193
3194 /*
3195 * Mark tuple for invalidation from system caches at next command
3196 * boundary. We have to do this before releasing the buffer because we
3197 * need to look at the contents of the tuple.
3198 */
3199 CacheInvalidateHeapTuple(relation, &tp, NULL);
3200
3201 /* Now we can release the buffer */
3202 ReleaseBuffer(buffer);
3203
3204 /*
3205 * Release the lmgr tuple lock, if we had it.
3206 */
3207 if (have_tuple_lock)
3209
3210 pgstat_count_heap_delete(relation);
3211
3212 if (old_key_tuple != NULL && old_key_copied)
3213 heap_freetuple(old_key_tuple);
3214
3215 return TM_Ok;
3216}
3217
3218/*
3219 * simple_heap_delete - delete a tuple
3220 *
3221 * This routine may be used to delete a tuple when concurrent updates of
3222 * the target tuple are not expected (for example, because we have a lock
3223 * on the relation associated with the tuple). Any failure is reported
3224 * via ereport().
3225 */
3226void
3228{
3229 TM_Result result;
3230 TM_FailureData tmfd;
3231
3232 result = heap_delete(relation, tid,
3234 true /* wait for commit */ ,
3235 &tmfd, false /* changingPart */ );
3236 switch (result)
3237 {
3238 case TM_SelfModified:
3239 /* Tuple was already updated in current command? */
3240 elog(ERROR, "tuple already updated by self");
3241 break;
3242
3243 case TM_Ok:
3244 /* done successfully */
3245 break;
3246
3247 case TM_Updated:
3248 elog(ERROR, "tuple concurrently updated");
3249 break;
3250
3251 case TM_Deleted:
3252 elog(ERROR, "tuple concurrently deleted");
3253 break;
3254
3255 default:
3256 elog(ERROR, "unrecognized heap_delete status: %u", result);
3257 break;
3258 }
3259}
3260
3261/*
3262 * heap_update - replace a tuple
3263 *
3264 * See table_tuple_update() for an explanation of the parameters, except that
3265 * this routine directly takes a tuple rather than a slot.
3266 *
3267 * In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
3268 * t_xmax (resolving a possible MultiXact, if necessary), and t_cmax (the last
3269 * only for TM_SelfModified, since we cannot obtain cmax from a combo CID
3270 * generated by another transaction).
3271 */
3273heap_update(Relation relation, const ItemPointerData *otid, HeapTuple newtup,
3274 CommandId cid, Snapshot crosscheck, bool wait,
3275 TM_FailureData *tmfd, LockTupleMode *lockmode,
3276 TU_UpdateIndexes *update_indexes)
3277{
3278 TM_Result result;
3280 Bitmapset *hot_attrs;
3281 Bitmapset *sum_attrs;
3282 Bitmapset *key_attrs;
3283 Bitmapset *id_attrs;
3284 Bitmapset *interesting_attrs;
3285 Bitmapset *modified_attrs;
3286 ItemId lp;
3287 HeapTupleData oldtup;
3288 HeapTuple heaptup;
3289 HeapTuple old_key_tuple = NULL;
3290 bool old_key_copied = false;
3291 Page page;
3292 BlockNumber block;
3293 MultiXactStatus mxact_status;
3294 Buffer buffer,
3295 newbuf,
3296 vmbuffer = InvalidBuffer,
3297 vmbuffer_new = InvalidBuffer;
3298 bool need_toast;
3299 Size newtupsize,
3300 pagefree;
3301 bool have_tuple_lock = false;
3302 bool iscombo;
3303 bool use_hot_update = false;
3304 bool summarized_update = false;
3305 bool key_intact;
3306 bool all_visible_cleared = false;
3307 bool all_visible_cleared_new = false;
3308 bool checked_lockers;
3309 bool locker_remains;
3310 bool id_has_external = false;
3311 TransactionId xmax_new_tuple,
3312 xmax_old_tuple;
3313 uint16 infomask_old_tuple,
3314 infomask2_old_tuple,
3315 infomask_new_tuple,
3316 infomask2_new_tuple;
3317
3319
3320 /* Cheap, simplistic check that the tuple matches the rel's rowtype. */
3323
3324 AssertHasSnapshotForToast(relation);
3325
3326 /*
3327 * Forbid this during a parallel operation, lest it allocate a combo CID.
3328 * Other workers might need that combo CID for visibility checks, and we
3329 * have no provision for broadcasting it to them.
3330 */
3331 if (IsInParallelMode())
3332 ereport(ERROR,
3333 (errcode(ERRCODE_INVALID_TRANSACTION_STATE),
3334 errmsg("cannot update tuples during a parallel operation")));
3335
3336#ifdef USE_ASSERT_CHECKING
3337 check_lock_if_inplace_updateable_rel(relation, otid, newtup);
3338#endif
3339
3340 /*
3341 * Fetch the list of attributes to be checked for various operations.
3342 *
3343 * For HOT considerations, this is wasted effort if we fail to update or
3344 * have to put the new tuple on a different page. But we must compute the
3345 * list before obtaining buffer lock --- in the worst case, if we are
3346 * doing an update on one of the relevant system catalogs, we could
3347 * deadlock if we try to fetch the list later. In any case, the relcache
3348 * caches the data so this is usually pretty cheap.
3349 *
3350 * We also need columns used by the replica identity and columns that are
3351 * considered the "key" of rows in the table.
3352 *
3353 * Note that we get copies of each bitmap, so we need not worry about
3354 * relcache flush happening midway through.
3355 */
3356 hot_attrs = RelationGetIndexAttrBitmap(relation,
3358 sum_attrs = RelationGetIndexAttrBitmap(relation,
3361 id_attrs = RelationGetIndexAttrBitmap(relation,
3363 interesting_attrs = NULL;
3364 interesting_attrs = bms_add_members(interesting_attrs, hot_attrs);
3365 interesting_attrs = bms_add_members(interesting_attrs, sum_attrs);
3366 interesting_attrs = bms_add_members(interesting_attrs, key_attrs);
3367 interesting_attrs = bms_add_members(interesting_attrs, id_attrs);
3368
3369 block = ItemPointerGetBlockNumber(otid);
3370 INJECTION_POINT("heap_update-before-pin", NULL);
3371 buffer = ReadBuffer(relation, block);
3372 page = BufferGetPage(buffer);
3373
3374 /*
3375 * Before locking the buffer, pin the visibility map page if it appears to
3376 * be necessary. Since we haven't got the lock yet, someone else might be
3377 * in the middle of changing this, so we'll need to recheck after we have
3378 * the lock.
3379 */
3380 if (PageIsAllVisible(page))
3381 visibilitymap_pin(relation, block, &vmbuffer);
3382
3384
3385 lp = PageGetItemId(page, ItemPointerGetOffsetNumber(otid));
3386
3387 /*
3388 * Usually, a buffer pin and/or snapshot blocks pruning of otid, ensuring
3389 * we see LP_NORMAL here. When the otid origin is a syscache, we may have
3390 * neither a pin nor a snapshot. Hence, we may see other LP_ states, each
3391 * of which indicates concurrent pruning.
3392 *
3393 * Failing with TM_Updated would be most accurate. However, unlike other
3394 * TM_Updated scenarios, we don't know the successor ctid in LP_UNUSED and
3395 * LP_DEAD cases. While the distinction between TM_Updated and TM_Deleted
3396 * does matter to SQL statements UPDATE and MERGE, those SQL statements
3397 * hold a snapshot that ensures LP_NORMAL. Hence, the choice between
3398 * TM_Updated and TM_Deleted affects only the wording of error messages.
3399 * Settle on TM_Deleted, for two reasons. First, it avoids complicating
3400 * the specification of when tmfd->ctid is valid. Second, it creates
3401 * error log evidence that we took this branch.
3402 *
3403 * Since it's possible to see LP_UNUSED at otid, it's also possible to see
3404 * LP_NORMAL for a tuple that replaced LP_UNUSED. If it's a tuple for an
3405 * unrelated row, we'll fail with "duplicate key value violates unique".
3406 * XXX if otid is the live, newer version of the newtup row, we'll discard
3407 * changes originating in versions of this catalog row after the version
3408 * the caller got from syscache. See syscache-update-pruned.spec.
3409 */
3410 if (!ItemIdIsNormal(lp))
3411 {
3413
3414 UnlockReleaseBuffer(buffer);
3415 Assert(!have_tuple_lock);
3416 if (vmbuffer != InvalidBuffer)
3417 ReleaseBuffer(vmbuffer);
3418 tmfd->ctid = *otid;
3419 tmfd->xmax = InvalidTransactionId;
3420 tmfd->cmax = InvalidCommandId;
3421 *update_indexes = TU_None;
3422
3423 bms_free(hot_attrs);
3424 bms_free(sum_attrs);
3425 bms_free(key_attrs);
3426 bms_free(id_attrs);
3427 /* modified_attrs not yet initialized */
3428 bms_free(interesting_attrs);
3429 return TM_Deleted;
3430 }
3431
3432 /*
3433 * Fill in enough data in oldtup for HeapDetermineColumnsInfo to work
3434 * properly.
3435 */
3436 oldtup.t_tableOid = RelationGetRelid(relation);
3437 oldtup.t_data = (HeapTupleHeader) PageGetItem(page, lp);
3438 oldtup.t_len = ItemIdGetLength(lp);
3439 oldtup.t_self = *otid;
3440
3441 /* the new tuple is ready, except for this: */
3442 newtup->t_tableOid = RelationGetRelid(relation);
3443
3444 /*
3445 * Determine columns modified by the update. Additionally, identify
3446 * whether any of the unmodified replica identity key attributes in the
3447 * old tuple is externally stored or not. This is required because for
3448 * such attributes the flattened value won't be WAL logged as part of the
3449 * new tuple so we must include it as part of the old_key_tuple. See
3450 * ExtractReplicaIdentity.
3451 */
3452 modified_attrs = HeapDetermineColumnsInfo(relation, interesting_attrs,
3453 id_attrs, &oldtup,
3454 newtup, &id_has_external);
3455
3456 /*
3457 * If we're not updating any "key" column, we can grab a weaker lock type.
3458 * This allows for more concurrency when we are running simultaneously
3459 * with foreign key checks.
3460 *
3461 * Note that if a column gets detoasted while executing the update, but
3462 * the value ends up being the same, this test will fail and we will use
3463 * the stronger lock. This is acceptable; the important case to optimize
3464 * is updates that don't manipulate key columns, not those that
3465 * serendipitously arrive at the same key values.
3466 */
3467 if (!bms_overlap(modified_attrs, key_attrs))
3468 {
3469 *lockmode = LockTupleNoKeyExclusive;
3470 mxact_status = MultiXactStatusNoKeyUpdate;
3471 key_intact = true;
3472
3473 /*
3474 * If this is the first possibly-multixact-able operation in the
3475 * current transaction, set my per-backend OldestMemberMXactId
3476 * setting. We can be certain that the transaction will never become a
3477 * member of any older MultiXactIds than that. (We have to do this
3478 * even if we end up just using our own TransactionId below, since
3479 * some other backend could incorporate our XID into a MultiXact
3480 * immediately afterwards.)
3481 */
3483 }
3484 else
3485 {
3486 *lockmode = LockTupleExclusive;
3487 mxact_status = MultiXactStatusUpdate;
3488 key_intact = false;
3489 }
3490
3491 /*
3492 * Note: beyond this point, use oldtup not otid to refer to old tuple.
3493 * otid may very well point at newtup->t_self, which we will overwrite
3494 * with the new tuple's location, so there's great risk of confusion if we
3495 * use otid anymore.
3496 */
3497
3498l2:
3499 checked_lockers = false;
3500 locker_remains = false;
3501 result = HeapTupleSatisfiesUpdate(&oldtup, cid, buffer);
3502
3503 /* see below about the "no wait" case */
3504 Assert(result != TM_BeingModified || wait);
3505
3506 if (result == TM_Invisible)
3507 {
3508 UnlockReleaseBuffer(buffer);
3509 ereport(ERROR,
3510 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
3511 errmsg("attempted to update invisible tuple")));
3512 }
3513 else if (result == TM_BeingModified && wait)
3514 {
3515 TransactionId xwait;
3516 uint16 infomask;
3517 bool can_continue = false;
3518
3519 /*
3520 * XXX note that we don't consider the "no wait" case here. This
3521 * isn't a problem currently because no caller uses that case, but it
3522 * should be fixed if such a caller is introduced. It wasn't a
3523 * problem previously because this code would always wait, but now
3524 * that some tuple locks do not conflict with one of the lock modes we
3525 * use, it is possible that this case is interesting to handle
3526 * specially.
3527 *
3528 * This may cause failures with third-party code that calls
3529 * heap_update directly.
3530 */
3531
3532 /* must copy state data before unlocking buffer */
3533 xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
3534 infomask = oldtup.t_data->t_infomask;
3535
3536 /*
3537 * Now we have to do something about the existing locker. If it's a
3538 * multi, sleep on it; we might be awakened before it is completely
3539 * gone (or even not sleep at all in some cases); we need to preserve
3540 * it as locker, unless it is gone completely.
3541 *
3542 * If it's not a multi, we need to check for sleeping conditions
3543 * before actually going to sleep. If the update doesn't conflict
3544 * with the locks, we just continue without sleeping (but making sure
3545 * it is preserved).
3546 *
3547 * Before sleeping, we need to acquire tuple lock to establish our
3548 * priority for the tuple (see heap_lock_tuple). LockTuple will
3549 * release us when we are next-in-line for the tuple. Note we must
3550 * not acquire the tuple lock until we're sure we're going to sleep;
3551 * otherwise we're open for race conditions with other transactions
3552 * holding the tuple lock which sleep on us.
3553 *
3554 * If we are forced to "start over" below, we keep the tuple lock;
3555 * this arranges that we stay at the head of the line while rechecking
3556 * tuple state.
3557 */
3558 if (infomask & HEAP_XMAX_IS_MULTI)
3559 {
3560 TransactionId update_xact;
3561 int remain;
3562 bool current_is_member = false;
3563
3564 if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
3565 *lockmode, &current_is_member))
3566 {
3568
3569 /*
3570 * Acquire the lock, if necessary (but skip it when we're
3571 * requesting a lock and already have one; avoids deadlock).
3572 */
3573 if (!current_is_member)
3574 heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
3575 LockWaitBlock, &have_tuple_lock);
3576
3577 /* wait for multixact */
3578 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
3579 relation, &oldtup.t_self, XLTW_Update,
3580 &remain);
3581 checked_lockers = true;
3582 locker_remains = remain != 0;
3584
3585 /*
3586 * If xwait had just locked the tuple then some other xact
3587 * could update this tuple before we get to this point. Check
3588 * for xmax change, and start over if so.
3589 */
3591 infomask) ||
3593 xwait))
3594 goto l2;
3595 }
3596
3597 /*
3598 * Note that the multixact may not be done by now. It could have
3599 * surviving members; our own xact or other subxacts of this
3600 * backend, and also any other concurrent transaction that locked
3601 * the tuple with LockTupleKeyShare if we only got
3602 * LockTupleNoKeyExclusive. If this is the case, we have to be
3603 * careful to mark the updated tuple with the surviving members in
3604 * Xmax.
3605 *
3606 * Note that there could have been another update in the
3607 * MultiXact. In that case, we need to check whether it committed
3608 * or aborted. If it aborted we are safe to update it again;
3609 * otherwise there is an update conflict, and we have to return
3610 * TableTuple{Deleted, Updated} below.
3611 *
3612 * In the LockTupleExclusive case, we still need to preserve the
3613 * surviving members: those would include the tuple locks we had
3614 * before this one, which are important to keep in case this
3615 * subxact aborts.
3616 */
3618 update_xact = HeapTupleGetUpdateXid(oldtup.t_data);
3619 else
3620 update_xact = InvalidTransactionId;
3621
3622 /*
3623 * There was no UPDATE in the MultiXact; or it aborted. No
3624 * TransactionIdIsInProgress() call needed here, since we called
3625 * MultiXactIdWait() above.
3626 */
3627 if (!TransactionIdIsValid(update_xact) ||
3628 TransactionIdDidAbort(update_xact))
3629 can_continue = true;
3630 }
3632 {
3633 /*
3634 * The only locker is ourselves; we can avoid grabbing the tuple
3635 * lock here, but must preserve our locking information.
3636 */
3637 checked_lockers = true;
3638 locker_remains = true;
3639 can_continue = true;
3640 }
3641 else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask) && key_intact)
3642 {
3643 /*
3644 * If it's just a key-share locker, and we're not changing the key
3645 * columns, we don't need to wait for it to end; but we need to
3646 * preserve it as locker.
3647 */
3648 checked_lockers = true;
3649 locker_remains = true;
3650 can_continue = true;
3651 }
3652 else
3653 {
3654 /*
3655 * Wait for regular transaction to end; but first, acquire tuple
3656 * lock.
3657 */
3659 heap_acquire_tuplock(relation, &(oldtup.t_self), *lockmode,
3660 LockWaitBlock, &have_tuple_lock);
3661 XactLockTableWait(xwait, relation, &oldtup.t_self,
3662 XLTW_Update);
3663 checked_lockers = true;
3665
3666 /*
3667 * xwait is done, but if xwait had just locked the tuple then some
3668 * other xact could update this tuple before we get to this point.
3669 * Check for xmax change, and start over if so.
3670 */
3671 if (xmax_infomask_changed(oldtup.t_data->t_infomask, infomask) ||
3672 !TransactionIdEquals(xwait,
3674 goto l2;
3675
3676 /* Otherwise check if it committed or aborted */
3677 UpdateXmaxHintBits(oldtup.t_data, buffer, xwait);
3678 if (oldtup.t_data->t_infomask & HEAP_XMAX_INVALID)
3679 can_continue = true;
3680 }
3681
3682 if (can_continue)
3683 result = TM_Ok;
3684 else if (!ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid))
3685 result = TM_Updated;
3686 else
3687 result = TM_Deleted;
3688 }
3689
3690 /* Sanity check the result HeapTupleSatisfiesUpdate() and the logic above */
3691 if (result != TM_Ok)
3692 {
3693 Assert(result == TM_SelfModified ||
3694 result == TM_Updated ||
3695 result == TM_Deleted ||
3696 result == TM_BeingModified);
3698 Assert(result != TM_Updated ||
3699 !ItemPointerEquals(&oldtup.t_self, &oldtup.t_data->t_ctid));
3700 }
3701
3702 if (crosscheck != InvalidSnapshot && result == TM_Ok)
3703 {
3704 /* Perform additional check for transaction-snapshot mode RI updates */
3705 if (!HeapTupleSatisfiesVisibility(&oldtup, crosscheck, buffer))
3706 result = TM_Updated;
3707 }
3708
3709 if (result != TM_Ok)
3710 {
3711 tmfd->ctid = oldtup.t_data->t_ctid;
3712 tmfd->xmax = HeapTupleHeaderGetUpdateXid(oldtup.t_data);
3713 if (result == TM_SelfModified)
3714 tmfd->cmax = HeapTupleHeaderGetCmax(oldtup.t_data);
3715 else
3716 tmfd->cmax = InvalidCommandId;
3717 UnlockReleaseBuffer(buffer);
3718 if (have_tuple_lock)
3719 UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
3720 if (vmbuffer != InvalidBuffer)
3721 ReleaseBuffer(vmbuffer);
3722 *update_indexes = TU_None;
3723
3724 bms_free(hot_attrs);
3725 bms_free(sum_attrs);
3726 bms_free(key_attrs);
3727 bms_free(id_attrs);
3728 bms_free(modified_attrs);
3729 bms_free(interesting_attrs);
3730 return result;
3731 }
3732
3733 /*
3734 * If we didn't pin the visibility map page and the page has become all
3735 * visible while we were busy locking the buffer, or during some
3736 * subsequent window during which we had it unlocked, we'll have to unlock
3737 * and re-lock, to avoid holding the buffer lock across an I/O. That's a
3738 * bit unfortunate, especially since we'll now have to recheck whether the
3739 * tuple has been locked or updated under us, but hopefully it won't
3740 * happen very often.
3741 */
3742 if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
3743 {
3745 visibilitymap_pin(relation, block, &vmbuffer);
3747 goto l2;
3748 }
3749
3750 /* Fill in transaction status data */
3751
3752 /*
3753 * If the tuple we're updating is locked, we need to preserve the locking
3754 * info in the old tuple's Xmax. Prepare a new Xmax value for this.
3755 */
3757 oldtup.t_data->t_infomask,
3758 oldtup.t_data->t_infomask2,
3759 xid, *lockmode, true,
3760 &xmax_old_tuple, &infomask_old_tuple,
3761 &infomask2_old_tuple);
3762
3763 /*
3764 * And also prepare an Xmax value for the new copy of the tuple. If there
3765 * was no xmax previously, or there was one but all lockers are now gone,
3766 * then use InvalidTransactionId; otherwise, get the xmax from the old
3767 * tuple. (In rare cases that might also be InvalidTransactionId and yet
3768 * not have the HEAP_XMAX_INVALID bit set; that's fine.)
3769 */
3770 if ((oldtup.t_data->t_infomask & HEAP_XMAX_INVALID) ||
3772 (checked_lockers && !locker_remains))
3773 xmax_new_tuple = InvalidTransactionId;
3774 else
3775 xmax_new_tuple = HeapTupleHeaderGetRawXmax(oldtup.t_data);
3776
3777 if (!TransactionIdIsValid(xmax_new_tuple))
3778 {
3779 infomask_new_tuple = HEAP_XMAX_INVALID;
3780 infomask2_new_tuple = 0;
3781 }
3782 else
3783 {
3784 /*
3785 * If we found a valid Xmax for the new tuple, then the infomask bits
3786 * to use on the new tuple depend on what was there on the old one.
3787 * Note that since we're doing an update, the only possibility is that
3788 * the lockers had FOR KEY SHARE lock.
3789 */
3790 if (oldtup.t_data->t_infomask & HEAP_XMAX_IS_MULTI)
3791 {
3792 GetMultiXactIdHintBits(xmax_new_tuple, &infomask_new_tuple,
3793 &infomask2_new_tuple);
3794 }
3795 else
3796 {
3797 infomask_new_tuple = HEAP_XMAX_KEYSHR_LOCK | HEAP_XMAX_LOCK_ONLY;
3798 infomask2_new_tuple = 0;
3799 }
3800 }
3801
3802 /*
3803 * Prepare the new tuple with the appropriate initial values of Xmin and
3804 * Xmax, as well as initial infomask bits as computed above.
3805 */
3806 newtup->t_data->t_infomask &= ~(HEAP_XACT_MASK);
3807 newtup->t_data->t_infomask2 &= ~(HEAP2_XACT_MASK);
3808 HeapTupleHeaderSetXmin(newtup->t_data, xid);
3809 HeapTupleHeaderSetCmin(newtup->t_data, cid);
3810 newtup->t_data->t_infomask |= HEAP_UPDATED | infomask_new_tuple;
3811 newtup->t_data->t_infomask2 |= infomask2_new_tuple;
3812 HeapTupleHeaderSetXmax(newtup->t_data, xmax_new_tuple);
3813
3814 /*
3815 * Replace cid with a combo CID if necessary. Note that we already put
3816 * the plain cid into the new tuple.
3817 */
3818 HeapTupleHeaderAdjustCmax(oldtup.t_data, &cid, &iscombo);
3819
3820 /*
3821 * If the toaster needs to be activated, OR if the new tuple will not fit
3822 * on the same page as the old, then we need to release the content lock
3823 * (but not the pin!) on the old tuple's buffer while we are off doing
3824 * TOAST and/or table-file-extension work. We must mark the old tuple to
3825 * show that it's locked, else other processes may try to update it
3826 * themselves.
3827 *
3828 * We need to invoke the toaster if there are already any out-of-line
3829 * toasted values present, or if the new tuple is over-threshold.
3830 */
3831 if (relation->rd_rel->relkind != RELKIND_RELATION &&
3832 relation->rd_rel->relkind != RELKIND_MATVIEW)
3833 {
3834 /* toast table entries should never be recursively toasted */
3835 Assert(!HeapTupleHasExternal(&oldtup));
3836 Assert(!HeapTupleHasExternal(newtup));
3837 need_toast = false;
3838 }
3839 else
3840 need_toast = (HeapTupleHasExternal(&oldtup) ||
3841 HeapTupleHasExternal(newtup) ||
3842 newtup->t_len > TOAST_TUPLE_THRESHOLD);
3843
3844 pagefree = PageGetHeapFreeSpace(page);
3845
3846 newtupsize = MAXALIGN(newtup->t_len);
3847
3848 if (need_toast || newtupsize > pagefree)
3849 {
3850 TransactionId xmax_lock_old_tuple;
3851 uint16 infomask_lock_old_tuple,
3852 infomask2_lock_old_tuple;
3853 bool cleared_all_frozen = false;
3854
3855 /*
3856 * To prevent concurrent sessions from updating the tuple, we have to
3857 * temporarily mark it locked, while we release the page-level lock.
3858 *
3859 * To satisfy the rule that any xid potentially appearing in a buffer
3860 * written out to disk, we unfortunately have to WAL log this
3861 * temporary modification. We can reuse xl_heap_lock for this
3862 * purpose. If we crash/error before following through with the
3863 * actual update, xmax will be of an aborted transaction, allowing
3864 * other sessions to proceed.
3865 */
3866
3867 /*
3868 * Compute xmax / infomask appropriate for locking the tuple. This has
3869 * to be done separately from the combo that's going to be used for
3870 * updating, because the potentially created multixact would otherwise
3871 * be wrong.
3872 */
3874 oldtup.t_data->t_infomask,
3875 oldtup.t_data->t_infomask2,
3876 xid, *lockmode, false,
3877 &xmax_lock_old_tuple, &infomask_lock_old_tuple,
3878 &infomask2_lock_old_tuple);
3879
3880 Assert(HEAP_XMAX_IS_LOCKED_ONLY(infomask_lock_old_tuple));
3881
3883
3884 /* Clear obsolete visibility flags ... */
3886 oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
3887 HeapTupleClearHotUpdated(&oldtup);
3888 /* ... and store info about transaction updating this tuple */
3889 Assert(TransactionIdIsValid(xmax_lock_old_tuple));
3890 HeapTupleHeaderSetXmax(oldtup.t_data, xmax_lock_old_tuple);
3891 oldtup.t_data->t_infomask |= infomask_lock_old_tuple;
3892 oldtup.t_data->t_infomask2 |= infomask2_lock_old_tuple;
3893 HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
3894
3895 /* temporarily make it look not-updated, but locked */
3896 oldtup.t_data->t_ctid = oldtup.t_self;
3897
3898 /*
3899 * Clear all-frozen bit on visibility map if needed. We could
3900 * immediately reset ALL_VISIBLE, but given that the WAL logging
3901 * overhead would be unchanged, that doesn't seem necessarily
3902 * worthwhile.
3903 */
3904 if (PageIsAllVisible(page) &&
3905 visibilitymap_clear(relation, block, vmbuffer,
3907 cleared_all_frozen = true;
3908
3909 MarkBufferDirty(buffer);
3910
3911 if (RelationNeedsWAL(relation))
3912 {
3913 xl_heap_lock xlrec;
3914 XLogRecPtr recptr;
3915
3918
3919 xlrec.offnum = ItemPointerGetOffsetNumber(&oldtup.t_self);
3920 xlrec.xmax = xmax_lock_old_tuple;
3922 oldtup.t_data->t_infomask2);
3923 xlrec.flags =
3924 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
3926 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
3927 PageSetLSN(page, recptr);
3928 }
3929
3931
3933
3934 /*
3935 * Let the toaster do its thing, if needed.
3936 *
3937 * Note: below this point, heaptup is the data we actually intend to
3938 * store into the relation; newtup is the caller's original untoasted
3939 * data.
3940 */
3941 if (need_toast)
3942 {
3943 /* Note we always use WAL and FSM during updates */
3944 heaptup = heap_toast_insert_or_update(relation, newtup, &oldtup, 0);
3945 newtupsize = MAXALIGN(heaptup->t_len);
3946 }
3947 else
3948 heaptup = newtup;
3949
3950 /*
3951 * Now, do we need a new page for the tuple, or not? This is a bit
3952 * tricky since someone else could have added tuples to the page while
3953 * we weren't looking. We have to recheck the available space after
3954 * reacquiring the buffer lock. But don't bother to do that if the
3955 * former amount of free space is still not enough; it's unlikely
3956 * there's more free now than before.
3957 *
3958 * What's more, if we need to get a new page, we will need to acquire
3959 * buffer locks on both old and new pages. To avoid deadlock against
3960 * some other backend trying to get the same two locks in the other
3961 * order, we must be consistent about the order we get the locks in.
3962 * We use the rule "lock the lower-numbered page of the relation
3963 * first". To implement this, we must do RelationGetBufferForTuple
3964 * while not holding the lock on the old page, and we must rely on it
3965 * to get the locks on both pages in the correct order.
3966 *
3967 * Another consideration is that we need visibility map page pin(s) if
3968 * we will have to clear the all-visible flag on either page. If we
3969 * call RelationGetBufferForTuple, we rely on it to acquire any such
3970 * pins; but if we don't, we have to handle that here. Hence we need
3971 * a loop.
3972 */
3973 for (;;)
3974 {
3975 if (newtupsize > pagefree)
3976 {
3977 /* It doesn't fit, must use RelationGetBufferForTuple. */
3978 newbuf = RelationGetBufferForTuple(relation, heaptup->t_len,
3979 buffer, 0, NULL,
3980 &vmbuffer_new, &vmbuffer,
3981 0);
3982 /* We're all done. */
3983 break;
3984 }
3985 /* Acquire VM page pin if needed and we don't have it. */
3986 if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
3987 visibilitymap_pin(relation, block, &vmbuffer);
3988 /* Re-acquire the lock on the old tuple's page. */
3990 /* Re-check using the up-to-date free space */
3991 pagefree = PageGetHeapFreeSpace(page);
3992 if (newtupsize > pagefree ||
3993 (vmbuffer == InvalidBuffer && PageIsAllVisible(page)))
3994 {
3995 /*
3996 * Rats, it doesn't fit anymore, or somebody just now set the
3997 * all-visible flag. We must now unlock and loop to avoid
3998 * deadlock. Fortunately, this path should seldom be taken.
3999 */
4001 }
4002 else
4003 {
4004 /* We're all done. */
4005 newbuf = buffer;
4006 break;
4007 }
4008 }
4009 }
4010 else
4011 {
4012 /* No TOAST work needed, and it'll fit on same page */
4013 newbuf = buffer;
4014 heaptup = newtup;
4015 }
4016
4017 /*
4018 * We're about to do the actual update -- check for conflict first, to
4019 * avoid possibly having to roll back work we've just done.
4020 *
4021 * This is safe without a recheck as long as there is no possibility of
4022 * another process scanning the pages between this check and the update
4023 * being visible to the scan (i.e., exclusive buffer content lock(s) are
4024 * continuously held from this point until the tuple update is visible).
4025 *
4026 * For the new tuple the only check needed is at the relation level, but
4027 * since both tuples are in the same relation and the check for oldtup
4028 * will include checking the relation level, there is no benefit to a
4029 * separate check for the new tuple.
4030 */
4031 CheckForSerializableConflictIn(relation, &oldtup.t_self,
4032 BufferGetBlockNumber(buffer));
4033
4034 /*
4035 * At this point newbuf and buffer are both pinned and locked, and newbuf
4036 * has enough space for the new tuple. If they are the same buffer, only
4037 * one pin is held.
4038 */
4039
4040 if (newbuf == buffer)
4041 {
4042 /*
4043 * Since the new tuple is going into the same page, we might be able
4044 * to do a HOT update. Check if any of the index columns have been
4045 * changed.
4046 */
4047 if (!bms_overlap(modified_attrs, hot_attrs))
4048 {
4049 use_hot_update = true;
4050
4051 /*
4052 * If none of the columns that are used in hot-blocking indexes
4053 * were updated, we can apply HOT, but we do still need to check
4054 * if we need to update the summarizing indexes, and update those
4055 * indexes if the columns were updated, or we may fail to detect
4056 * e.g. value bound changes in BRIN minmax indexes.
4057 */
4058 if (bms_overlap(modified_attrs, sum_attrs))
4059 summarized_update = true;
4060 }
4061 }
4062 else
4063 {
4064 /* Set a hint that the old page could use prune/defrag */
4065 PageSetFull(page);
4066 }
4067
4068 /*
4069 * Compute replica identity tuple before entering the critical section so
4070 * we don't PANIC upon a memory allocation failure.
4071 * ExtractReplicaIdentity() will return NULL if nothing needs to be
4072 * logged. Pass old key required as true only if the replica identity key
4073 * columns are modified or it has external data.
4074 */
4075 old_key_tuple = ExtractReplicaIdentity(relation, &oldtup,
4076 bms_overlap(modified_attrs, id_attrs) ||
4077 id_has_external,
4078 &old_key_copied);
4079
4080 /* NO EREPORT(ERROR) from here till changes are logged */
4082
4083 /*
4084 * If this transaction commits, the old tuple will become DEAD sooner or
4085 * later. Set flag that this page is a candidate for pruning once our xid
4086 * falls below the OldestXmin horizon. If the transaction finally aborts,
4087 * the subsequent page pruning will be a no-op and the hint will be
4088 * cleared.
4089 *
4090 * XXX Should we set hint on newbuf as well? If the transaction aborts,
4091 * there would be a prunable tuple in the newbuf; but for now we choose
4092 * not to optimize for aborts. Note that heap_xlog_update must be kept in
4093 * sync if this decision changes.
4094 */
4095 PageSetPrunable(page, xid);
4096
4097 if (use_hot_update)
4098 {
4099 /* Mark the old tuple as HOT-updated */
4100 HeapTupleSetHotUpdated(&oldtup);
4101 /* And mark the new tuple as heap-only */
4102 HeapTupleSetHeapOnly(heaptup);
4103 /* Mark the caller's copy too, in case different from heaptup */
4104 HeapTupleSetHeapOnly(newtup);
4105 }
4106 else
4107 {
4108 /* Make sure tuples are correctly marked as not-HOT */
4109 HeapTupleClearHotUpdated(&oldtup);
4110 HeapTupleClearHeapOnly(heaptup);
4111 HeapTupleClearHeapOnly(newtup);
4112 }
4113
4114 RelationPutHeapTuple(relation, newbuf, heaptup, false); /* insert new tuple */
4115
4116
4117 /* Clear obsolete visibility flags, possibly set by ourselves above... */
4119 oldtup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
4120 /* ... and store info about transaction updating this tuple */
4121 Assert(TransactionIdIsValid(xmax_old_tuple));
4122 HeapTupleHeaderSetXmax(oldtup.t_data, xmax_old_tuple);
4123 oldtup.t_data->t_infomask |= infomask_old_tuple;
4124 oldtup.t_data->t_infomask2 |= infomask2_old_tuple;
4125 HeapTupleHeaderSetCmax(oldtup.t_data, cid, iscombo);
4126
4127 /* record address of new tuple in t_ctid of old one */
4128 oldtup.t_data->t_ctid = heaptup->t_self;
4129
4130 /* clear PD_ALL_VISIBLE flags, reset all visibilitymap bits */
4131 if (PageIsAllVisible(BufferGetPage(buffer)))
4132 {
4133 all_visible_cleared = true;
4135 visibilitymap_clear(relation, BufferGetBlockNumber(buffer),
4136 vmbuffer, VISIBILITYMAP_VALID_BITS);
4137 }
4138 if (newbuf != buffer && PageIsAllVisible(BufferGetPage(newbuf)))
4139 {
4140 all_visible_cleared_new = true;
4142 visibilitymap_clear(relation, BufferGetBlockNumber(newbuf),
4143 vmbuffer_new, VISIBILITYMAP_VALID_BITS);
4144 }
4145
4146 if (newbuf != buffer)
4147 MarkBufferDirty(newbuf);
4148 MarkBufferDirty(buffer);
4149
4150 /* XLOG stuff */
4151 if (RelationNeedsWAL(relation))
4152 {
4153 XLogRecPtr recptr;
4154
4155 /*
4156 * For logical decoding we need combo CIDs to properly decode the
4157 * catalog.
4158 */
4160 {
4161 log_heap_new_cid(relation, &oldtup);
4162 log_heap_new_cid(relation, heaptup);
4163 }
4164
4165 recptr = log_heap_update(relation, buffer,
4166 newbuf, &oldtup, heaptup,
4167 old_key_tuple,
4168 all_visible_cleared,
4169 all_visible_cleared_new);
4170 if (newbuf != buffer)
4171 {
4172 PageSetLSN(BufferGetPage(newbuf), recptr);
4173 }
4174 PageSetLSN(BufferGetPage(buffer), recptr);
4175 }
4176
4178
4179 if (newbuf != buffer)
4182
4183 /*
4184 * Mark old tuple for invalidation from system caches at next command
4185 * boundary, and mark the new tuple for invalidation in case we abort. We
4186 * have to do this before releasing the buffer because oldtup is in the
4187 * buffer. (heaptup is all in local memory, but it's necessary to process
4188 * both tuple versions in one call to inval.c so we can avoid redundant
4189 * sinval messages.)
4190 */
4191 CacheInvalidateHeapTuple(relation, &oldtup, heaptup);
4192
4193 /* Now we can release the buffer(s) */
4194 if (newbuf != buffer)
4195 ReleaseBuffer(newbuf);
4196 ReleaseBuffer(buffer);
4197 if (BufferIsValid(vmbuffer_new))
4198 ReleaseBuffer(vmbuffer_new);
4199 if (BufferIsValid(vmbuffer))
4200 ReleaseBuffer(vmbuffer);
4201
4202 /*
4203 * Release the lmgr tuple lock, if we had it.
4204 */
4205 if (have_tuple_lock)
4206 UnlockTupleTuplock(relation, &(oldtup.t_self), *lockmode);
4207
4208 pgstat_count_heap_update(relation, use_hot_update, newbuf != buffer);
4209
4210 /*
4211 * If heaptup is a private copy, release it. Don't forget to copy t_self
4212 * back to the caller's image, too.
4213 */
4214 if (heaptup != newtup)
4215 {
4216 newtup->t_self = heaptup->t_self;
4217 heap_freetuple(heaptup);
4218 }
4219
4220 /*
4221 * If it is a HOT update, the update may still need to update summarized
4222 * indexes, lest we fail to update those summaries and get incorrect
4223 * results (for example, minmax bounds of the block may change with this
4224 * update).
4225 */
4226 if (use_hot_update)
4227 {
4228 if (summarized_update)
4229 *update_indexes = TU_Summarizing;
4230 else
4231 *update_indexes = TU_None;
4232 }
4233 else
4234 *update_indexes = TU_All;
4235
4236 if (old_key_tuple != NULL && old_key_copied)
4237 heap_freetuple(old_key_tuple);
4238
4239 bms_free(hot_attrs);
4240 bms_free(sum_attrs);
4241 bms_free(key_attrs);
4242 bms_free(id_attrs);
4243 bms_free(modified_attrs);
4244 bms_free(interesting_attrs);
4245
4246 return TM_Ok;
4247}
4248
4249#ifdef USE_ASSERT_CHECKING
4250/*
4251 * Confirm adequate lock held during heap_update(), per rules from
4252 * README.tuplock section "Locking to write inplace-updated tables".
4253 */
4254static void
4255check_lock_if_inplace_updateable_rel(Relation relation,
4256 const ItemPointerData *otid,
4257 HeapTuple newtup)
4258{
4259 /* LOCKTAG_TUPLE acceptable for any catalog */
4260 switch (RelationGetRelid(relation))
4261 {
4262 case RelationRelationId:
4263 case DatabaseRelationId:
4264 {
4265 LOCKTAG tuptag;
4266
4267 SET_LOCKTAG_TUPLE(tuptag,
4268 relation->rd_lockInfo.lockRelId.dbId,
4269 relation->rd_lockInfo.lockRelId.relId,
4272 if (LockHeldByMe(&tuptag, InplaceUpdateTupleLock, false))
4273 return;
4274 }
4275 break;
4276 default:
4277 Assert(!IsInplaceUpdateRelation(relation));
4278 return;
4279 }
4280
4281 switch (RelationGetRelid(relation))
4282 {
4283 case RelationRelationId:
4284 {
4285 /* LOCKTAG_TUPLE or LOCKTAG_RELATION ok */
4286 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(newtup);
4287 Oid relid = classForm->oid;
4288 Oid dbid;
4289 LOCKTAG tag;
4290
4291 if (IsSharedRelation(relid))
4292 dbid = InvalidOid;
4293 else
4294 dbid = MyDatabaseId;
4295
4296 if (classForm->relkind == RELKIND_INDEX)
4297 {
4298 Relation irel = index_open(relid, AccessShareLock);
4299
4300 SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
4302 }
4303 else
4304 SET_LOCKTAG_RELATION(tag, dbid, relid);
4305
4306 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, false) &&
4307 !LockHeldByMe(&tag, ShareRowExclusiveLock, true))
4308 elog(WARNING,
4309 "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
4310 NameStr(classForm->relname),
4311 relid,
4312 classForm->relkind,
4315 }
4316 break;
4317 case DatabaseRelationId:
4318 {
4319 /* LOCKTAG_TUPLE required */
4320 Form_pg_database dbForm = (Form_pg_database) GETSTRUCT(newtup);
4321
4322 elog(WARNING,
4323 "missing lock on database \"%s\" (OID %u) @ TID (%u,%u)",
4324 NameStr(dbForm->datname),
4325 dbForm->oid,
4328 }
4329 break;
4330 }
4331}
4332
4333/*
4334 * Confirm adequate relation lock held, per rules from README.tuplock section
4335 * "Locking to write inplace-updated tables".
4336 */
4337static void
4338check_inplace_rel_lock(HeapTuple oldtup)
4339{
4340 Form_pg_class classForm = (Form_pg_class) GETSTRUCT(oldtup);
4341 Oid relid = classForm->oid;
4342 Oid dbid;
4343 LOCKTAG tag;
4344
4345 if (IsSharedRelation(relid))
4346 dbid = InvalidOid;
4347 else
4348 dbid = MyDatabaseId;
4349
4350 if (classForm->relkind == RELKIND_INDEX)
4351 {
4352 Relation irel = index_open(relid, AccessShareLock);
4353
4354 SET_LOCKTAG_RELATION(tag, dbid, irel->rd_index->indrelid);
4356 }
4357 else
4358 SET_LOCKTAG_RELATION(tag, dbid, relid);
4359
4360 if (!LockHeldByMe(&tag, ShareUpdateExclusiveLock, true))
4361 elog(WARNING,
4362 "missing lock for relation \"%s\" (OID %u, relkind %c) @ TID (%u,%u)",
4363 NameStr(classForm->relname),
4364 relid,
4365 classForm->relkind,
4368}
4369#endif
4370
4371/*
4372 * Check if the specified attribute's values are the same. Subroutine for
4373 * HeapDetermineColumnsInfo.
4374 */
4375static bool
4376heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2,
4377 bool isnull1, bool isnull2)
4378{
4379 /*
4380 * If one value is NULL and other is not, then they are certainly not
4381 * equal
4382 */
4383 if (isnull1 != isnull2)
4384 return false;
4385
4386 /*
4387 * If both are NULL, they can be considered equal.
4388 */
4389 if (isnull1)
4390 return true;
4391
4392 /*
4393 * We do simple binary comparison of the two datums. This may be overly
4394 * strict because there can be multiple binary representations for the
4395 * same logical value. But we should be OK as long as there are no false
4396 * positives. Using a type-specific equality operator is messy because
4397 * there could be multiple notions of equality in different operator
4398 * classes; furthermore, we cannot safely invoke user-defined functions
4399 * while holding exclusive buffer lock.
4400 */
4401 if (attrnum <= 0)
4402 {
4403 /* The only allowed system columns are OIDs, so do this */
4404 return (DatumGetObjectId(value1) == DatumGetObjectId(value2));
4405 }
4406 else
4407 {
4408 CompactAttribute *att;
4409
4410 Assert(attrnum <= tupdesc->natts);
4411 att = TupleDescCompactAttr(tupdesc, attrnum - 1);
4412 return datumIsEqual(value1, value2, att->attbyval, att->attlen);
4413 }
4414}
4415
4416/*
4417 * Check which columns are being updated.
4418 *
4419 * Given an updated tuple, determine (and return into the output bitmapset),
4420 * from those listed as interesting, the set of columns that changed.
4421 *
4422 * has_external indicates if any of the unmodified attributes (from those
4423 * listed as interesting) of the old tuple is a member of external_cols and is
4424 * stored externally.
4425 */
4426static Bitmapset *
4428 Bitmapset *interesting_cols,
4429 Bitmapset *external_cols,
4430 HeapTuple oldtup, HeapTuple newtup,
4431 bool *has_external)
4432{
4433 int attidx;
4434 Bitmapset *modified = NULL;
4435 TupleDesc tupdesc = RelationGetDescr(relation);
4436
4437 attidx = -1;
4438 while ((attidx = bms_next_member(interesting_cols, attidx)) >= 0)
4439 {
4440 /* attidx is zero-based, attrnum is the normal attribute number */
4442 Datum value1,
4443 value2;
4444 bool isnull1,
4445 isnull2;
4446
4447 /*
4448 * If it's a whole-tuple reference, say "not equal". It's not really
4449 * worth supporting this case, since it could only succeed after a
4450 * no-op update, which is hardly a case worth optimizing for.
4451 */
4452 if (attrnum == 0)
4453 {
4454 modified = bms_add_member(modified, attidx);
4455 continue;
4456 }
4457
4458 /*
4459 * Likewise, automatically say "not equal" for any system attribute
4460 * other than tableOID; we cannot expect these to be consistent in a
4461 * HOT chain, or even to be set correctly yet in the new tuple.
4462 */
4463 if (attrnum < 0)
4464 {
4465 if (attrnum != TableOidAttributeNumber)
4466 {
4467 modified = bms_add_member(modified, attidx);
4468 continue;
4469 }
4470 }
4471
4472 /*
4473 * Extract the corresponding values. XXX this is pretty inefficient
4474 * if there are many indexed columns. Should we do a single
4475 * heap_deform_tuple call on each tuple, instead? But that doesn't
4476 * work for system columns ...
4477 */
4478 value1 = heap_getattr(oldtup, attrnum, tupdesc, &isnull1);
4479 value2 = heap_getattr(newtup, attrnum, tupdesc, &isnull2);
4480
4481 if (!heap_attr_equals(tupdesc, attrnum, value1,
4482 value2, isnull1, isnull2))
4483 {
4484 modified = bms_add_member(modified, attidx);
4485 continue;
4486 }
4487
4488 /*
4489 * No need to check attributes that can't be stored externally. Note
4490 * that system attributes can't be stored externally.
4491 */
4492 if (attrnum < 0 || isnull1 ||
4493 TupleDescCompactAttr(tupdesc, attrnum - 1)->attlen != -1)
4494 continue;
4495
4496 /*
4497 * Check if the old tuple's attribute is stored externally and is a
4498 * member of external_cols.
4499 */
4500 if (VARATT_IS_EXTERNAL((struct varlena *) DatumGetPointer(value1)) &&
4501 bms_is_member(attidx, external_cols))
4502 *has_external = true;
4503 }
4504
4505 return modified;
4506}
4507
4508/*
4509 * simple_heap_update - replace a tuple
4510 *
4511 * This routine may be used to update a tuple when concurrent updates of
4512 * the target tuple are not expected (for example, because we have a lock
4513 * on the relation associated with the tuple). Any failure is reported
4514 * via ereport().
4515 */
4516void
4518 TU_UpdateIndexes *update_indexes)
4519{
4520 TM_Result result;
4521 TM_FailureData tmfd;
4522 LockTupleMode lockmode;
4523
4524 result = heap_update(relation, otid, tup,
4526 true /* wait for commit */ ,
4527 &tmfd, &lockmode, update_indexes);
4528 switch (result)
4529 {
4530 case TM_SelfModified:
4531 /* Tuple was already updated in current command? */
4532 elog(ERROR, "tuple already updated by self");
4533 break;
4534
4535 case TM_Ok:
4536 /* done successfully */
4537 break;
4538
4539 case TM_Updated:
4540 elog(ERROR, "tuple concurrently updated");
4541 break;
4542
4543 case TM_Deleted:
4544 elog(ERROR, "tuple concurrently deleted");
4545 break;
4546
4547 default:
4548 elog(ERROR, "unrecognized heap_update status: %u", result);
4549 break;
4550 }
4551}
4552
4553
4554/*
4555 * Return the MultiXactStatus corresponding to the given tuple lock mode.
4556 */
4557static MultiXactStatus
4559{
4560 int retval;
4561
4562 if (is_update)
4563 retval = tupleLockExtraInfo[mode].updstatus;
4564 else
4565 retval = tupleLockExtraInfo[mode].lockstatus;
4566
4567 if (retval == -1)
4568 elog(ERROR, "invalid lock tuple mode %d/%s", mode,
4569 is_update ? "true" : "false");
4570
4571 return (MultiXactStatus) retval;
4572}
4573
4574/*
4575 * heap_lock_tuple - lock a tuple in shared or exclusive mode
4576 *
4577 * Note that this acquires a buffer pin, which the caller must release.
4578 *
4579 * Input parameters:
4580 * relation: relation containing tuple (caller must hold suitable lock)
4581 * cid: current command ID (used for visibility test, and stored into
4582 * tuple's cmax if lock is successful)
4583 * mode: indicates if shared or exclusive tuple lock is desired
4584 * wait_policy: what to do if tuple lock is not available
4585 * follow_updates: if true, follow the update chain to also lock descendant
4586 * tuples.
4587 *
4588 * Output parameters:
4589 * *tuple: all fields filled in
4590 * *buffer: set to buffer holding tuple (pinned but not locked at exit)
4591 * *tmfd: filled in failure cases (see below)
4592 *
4593 * Function results are the same as the ones for table_tuple_lock().
4594 *
4595 * In the failure cases other than TM_Invisible, the routine fills
4596 * *tmfd with the tuple's t_ctid, t_xmax (resolving a possible MultiXact,
4597 * if necessary), and t_cmax (the last only for TM_SelfModified,
4598 * since we cannot obtain cmax from a combo CID generated by another
4599 * transaction).
4600 * See comments for struct TM_FailureData for additional info.
4601 *
4602 * See README.tuplock for a thorough explanation of this mechanism.
4603 */
4606 CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy,
4607 bool follow_updates,
4608 Buffer *buffer, TM_FailureData *tmfd)
4609{
4610 TM_Result result;
4611 ItemPointer tid = &(tuple->t_self);
4612 ItemId lp;
4613 Page page;
4614 Buffer vmbuffer = InvalidBuffer;
4615 BlockNumber block;
4616 TransactionId xid,
4617 xmax;
4618 uint16 old_infomask,
4619 new_infomask,
4620 new_infomask2;
4621 bool first_time = true;
4622 bool skip_tuple_lock = false;
4623 bool have_tuple_lock = false;
4624 bool cleared_all_frozen = false;
4625
4626 *buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
4627 block = ItemPointerGetBlockNumber(tid);
4628
4629 /*
4630 * Before locking the buffer, pin the visibility map page if it appears to
4631 * be necessary. Since we haven't got the lock yet, someone else might be
4632 * in the middle of changing this, so we'll need to recheck after we have
4633 * the lock.
4634 */
4635 if (PageIsAllVisible(BufferGetPage(*buffer)))
4636 visibilitymap_pin(relation, block, &vmbuffer);
4637
4639
4640 page = BufferGetPage(*buffer);
4643
4644 tuple->t_data = (HeapTupleHeader) PageGetItem(page, lp);
4645 tuple->t_len = ItemIdGetLength(lp);
4646 tuple->t_tableOid = RelationGetRelid(relation);
4647
4648l3:
4649 result = HeapTupleSatisfiesUpdate(tuple, cid, *buffer);
4650
4651 if (result == TM_Invisible)
4652 {
4653 /*
4654 * This is possible, but only when locking a tuple for ON CONFLICT
4655 * UPDATE. We return this value here rather than throwing an error in
4656 * order to give that case the opportunity to throw a more specific
4657 * error.
4658 */
4659 result = TM_Invisible;
4660 goto out_locked;
4661 }
4662 else if (result == TM_BeingModified ||
4663 result == TM_Updated ||
4664 result == TM_Deleted)
4665 {
4666 TransactionId xwait;
4667 uint16 infomask;
4668 uint16 infomask2;
4669 bool require_sleep;
4670 ItemPointerData t_ctid;
4671
4672 /* must copy state data before unlocking buffer */
4673 xwait = HeapTupleHeaderGetRawXmax(tuple->t_data);
4674 infomask = tuple->t_data->t_infomask;
4675 infomask2 = tuple->t_data->t_infomask2;
4676 ItemPointerCopy(&tuple->t_data->t_ctid, &t_ctid);
4677
4679
4680 /*
4681 * If any subtransaction of the current top transaction already holds
4682 * a lock as strong as or stronger than what we're requesting, we
4683 * effectively hold the desired lock already. We *must* succeed
4684 * without trying to take the tuple lock, else we will deadlock
4685 * against anyone wanting to acquire a stronger lock.
4686 *
4687 * Note we only do this the first time we loop on the HTSU result;
4688 * there is no point in testing in subsequent passes, because
4689 * evidently our own transaction cannot have acquired a new lock after
4690 * the first time we checked.
4691 */
4692 if (first_time)
4693 {
4694 first_time = false;
4695
4696 if (infomask & HEAP_XMAX_IS_MULTI)
4697 {
4698 int i;
4699 int nmembers;
4700 MultiXactMember *members;
4701
4702 /*
4703 * We don't need to allow old multixacts here; if that had
4704 * been the case, HeapTupleSatisfiesUpdate would have returned
4705 * MayBeUpdated and we wouldn't be here.
4706 */
4707 nmembers =
4708 GetMultiXactIdMembers(xwait, &members, false,
4709 HEAP_XMAX_IS_LOCKED_ONLY(infomask));
4710
4711 for (i = 0; i < nmembers; i++)
4712 {
4713 /* only consider members of our own transaction */
4714 if (!TransactionIdIsCurrentTransactionId(members[i].xid))
4715 continue;
4716
4717 if (TUPLOCK_from_mxstatus(members[i].status) >= mode)
4718 {
4719 pfree(members);
4720 result = TM_Ok;
4721 goto out_unlocked;
4722 }
4723 else
4724 {
4725 /*
4726 * Disable acquisition of the heavyweight tuple lock.
4727 * Otherwise, when promoting a weaker lock, we might
4728 * deadlock with another locker that has acquired the
4729 * heavyweight tuple lock and is waiting for our
4730 * transaction to finish.
4731 *
4732 * Note that in this case we still need to wait for
4733 * the multixact if required, to avoid acquiring
4734 * conflicting locks.
4735 */
4736 skip_tuple_lock = true;
4737 }
4738 }
4739
4740 if (members)
4741 pfree(members);
4742 }
4744 {
4745 switch (mode)
4746 {
4747 case LockTupleKeyShare:
4749 HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
4750 HEAP_XMAX_IS_EXCL_LOCKED(infomask));
4751 result = TM_Ok;
4752 goto out_unlocked;
4753 case LockTupleShare:
4754 if (HEAP_XMAX_IS_SHR_LOCKED(infomask) ||
4755 HEAP_XMAX_IS_EXCL_LOCKED(infomask))
4756 {
4757 result = TM_Ok;
4758 goto out_unlocked;
4759 }
4760 break;
4762 if (HEAP_XMAX_IS_EXCL_LOCKED(infomask))
4763 {
4764 result = TM_Ok;
4765 goto out_unlocked;
4766 }
4767 break;
4768 case LockTupleExclusive:
4769 if (HEAP_XMAX_IS_EXCL_LOCKED(infomask) &&
4770 infomask2 & HEAP_KEYS_UPDATED)
4771 {
4772 result = TM_Ok;
4773 goto out_unlocked;
4774 }
4775 break;
4776 }
4777 }
4778 }
4779
4780 /*
4781 * Initially assume that we will have to wait for the locking
4782 * transaction(s) to finish. We check various cases below in which
4783 * this can be turned off.
4784 */
4785 require_sleep = true;
4786 if (mode == LockTupleKeyShare)
4787 {
4788 /*
4789 * If we're requesting KeyShare, and there's no update present, we
4790 * don't need to wait. Even if there is an update, we can still
4791 * continue if the key hasn't been modified.
4792 *
4793 * However, if there are updates, we need to walk the update chain
4794 * to mark future versions of the row as locked, too. That way,
4795 * if somebody deletes that future version, we're protected
4796 * against the key going away. This locking of future versions
4797 * could block momentarily, if a concurrent transaction is
4798 * deleting a key; or it could return a value to the effect that
4799 * the transaction deleting the key has already committed. So we
4800 * do this before re-locking the buffer; otherwise this would be
4801 * prone to deadlocks.
4802 *
4803 * Note that the TID we're locking was grabbed before we unlocked
4804 * the buffer. For it to change while we're not looking, the
4805 * other properties we're testing for below after re-locking the
4806 * buffer would also change, in which case we would restart this
4807 * loop above.
4808 */
4809 if (!(infomask2 & HEAP_KEYS_UPDATED))
4810 {
4811 bool updated;
4812
4813 updated = !HEAP_XMAX_IS_LOCKED_ONLY(infomask);
4814
4815 /*
4816 * If there are updates, follow the update chain; bail out if
4817 * that cannot be done.
4818 */
4819 if (follow_updates && updated)
4820 {
4821 TM_Result res;
4822
4823 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
4825 mode);
4826 if (res != TM_Ok)
4827 {
4828 result = res;
4829 /* recovery code expects to have buffer lock held */
4831 goto failed;
4832 }
4833 }
4834
4836
4837 /*
4838 * Make sure it's still an appropriate lock, else start over.
4839 * Also, if it wasn't updated before we released the lock, but
4840 * is updated now, we start over too; the reason is that we
4841 * now need to follow the update chain to lock the new
4842 * versions.
4843 */
4844 if (!HeapTupleHeaderIsOnlyLocked(tuple->t_data) &&
4845 ((tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED) ||
4846 !updated))
4847 goto l3;
4848
4849 /* Things look okay, so we can skip sleeping */
4850 require_sleep = false;
4851
4852 /*
4853 * Note we allow Xmax to change here; other updaters/lockers
4854 * could have modified it before we grabbed the buffer lock.
4855 * However, this is not a problem, because with the recheck we
4856 * just did we ensure that they still don't conflict with the
4857 * lock we want.
4858 */
4859 }
4860 }
4861 else if (mode == LockTupleShare)
4862 {
4863 /*
4864 * If we're requesting Share, we can similarly avoid sleeping if
4865 * there's no update and no exclusive lock present.
4866 */
4867 if (HEAP_XMAX_IS_LOCKED_ONLY(infomask) &&
4868 !HEAP_XMAX_IS_EXCL_LOCKED(infomask))
4869 {
4871
4872 /*
4873 * Make sure it's still an appropriate lock, else start over.
4874 * See above about allowing xmax to change.
4875 */
4878 goto l3;
4879 require_sleep = false;
4880 }
4881 }
4882 else if (mode == LockTupleNoKeyExclusive)
4883 {
4884 /*
4885 * If we're requesting NoKeyExclusive, we might also be able to
4886 * avoid sleeping; just ensure that there no conflicting lock
4887 * already acquired.
4888 */
4889 if (infomask & HEAP_XMAX_IS_MULTI)
4890 {
4891 if (!DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
4892 mode, NULL))
4893 {
4894 /*
4895 * No conflict, but if the xmax changed under us in the
4896 * meantime, start over.
4897 */
4899 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
4901 xwait))
4902 goto l3;
4903
4904 /* otherwise, we're good */
4905 require_sleep = false;
4906 }
4907 }
4908 else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
4909 {
4911
4912 /* if the xmax changed in the meantime, start over */
4913 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
4915 xwait))
4916 goto l3;
4917 /* otherwise, we're good */
4918 require_sleep = false;
4919 }
4920 }
4921
4922 /*
4923 * As a check independent from those above, we can also avoid sleeping
4924 * if the current transaction is the sole locker of the tuple. Note
4925 * that the strength of the lock already held is irrelevant; this is
4926 * not about recording the lock in Xmax (which will be done regardless
4927 * of this optimization, below). Also, note that the cases where we
4928 * hold a lock stronger than we are requesting are already handled
4929 * above by not doing anything.
4930 *
4931 * Note we only deal with the non-multixact case here; MultiXactIdWait
4932 * is well equipped to deal with this situation on its own.
4933 */
4934 if (require_sleep && !(infomask & HEAP_XMAX_IS_MULTI) &&
4936 {
4937 /* ... but if the xmax changed in the meantime, start over */
4939 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
4941 xwait))
4942 goto l3;
4944 require_sleep = false;
4945 }
4946
4947 /*
4948 * Time to sleep on the other transaction/multixact, if necessary.
4949 *
4950 * If the other transaction is an update/delete that's already
4951 * committed, then sleeping cannot possibly do any good: if we're
4952 * required to sleep, get out to raise an error instead.
4953 *
4954 * By here, we either have already acquired the buffer exclusive lock,
4955 * or we must wait for the locking transaction or multixact; so below
4956 * we ensure that we grab buffer lock after the sleep.
4957 */
4958 if (require_sleep && (result == TM_Updated || result == TM_Deleted))
4959 {
4961 goto failed;
4962 }
4963 else if (require_sleep)
4964 {
4965 /*
4966 * Acquire tuple lock to establish our priority for the tuple, or
4967 * die trying. LockTuple will release us when we are next-in-line
4968 * for the tuple. We must do this even if we are share-locking,
4969 * but not if we already have a weaker lock on the tuple.
4970 *
4971 * If we are forced to "start over" below, we keep the tuple lock;
4972 * this arranges that we stay at the head of the line while
4973 * rechecking tuple state.
4974 */
4975 if (!skip_tuple_lock &&
4976 !heap_acquire_tuplock(relation, tid, mode, wait_policy,
4977 &have_tuple_lock))
4978 {
4979 /*
4980 * This can only happen if wait_policy is Skip and the lock
4981 * couldn't be obtained.
4982 */
4983 result = TM_WouldBlock;
4984 /* recovery code expects to have buffer lock held */
4986 goto failed;
4987 }
4988
4989 if (infomask & HEAP_XMAX_IS_MULTI)
4990 {
4992
4993 /* We only ever lock tuples, never update them */
4994 if (status >= MultiXactStatusNoKeyUpdate)
4995 elog(ERROR, "invalid lock mode in heap_lock_tuple");
4996
4997 /* wait for multixact to end, or die trying */
4998 switch (wait_policy)
4999 {
5000 case LockWaitBlock:
5001 MultiXactIdWait((MultiXactId) xwait, status, infomask,
5002 relation, &tuple->t_self, XLTW_Lock, NULL);
5003 break;
5004 case LockWaitSkip:
5006 status, infomask, relation,
5007 NULL, false))
5008 {
5009 result = TM_WouldBlock;
5010 /* recovery code expects to have buffer lock held */
5012 goto failed;
5013 }
5014 break;
5015 case LockWaitError:
5017 status, infomask, relation,
5018 NULL, log_lock_failures))
5019 ereport(ERROR,
5020 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
5021 errmsg("could not obtain lock on row in relation \"%s\"",
5022 RelationGetRelationName(relation))));
5023
5024 break;
5025 }
5026
5027 /*
5028 * Of course, the multixact might not be done here: if we're
5029 * requesting a light lock mode, other transactions with light
5030 * locks could still be alive, as well as locks owned by our
5031 * own xact or other subxacts of this backend. We need to
5032 * preserve the surviving MultiXact members. Note that it
5033 * isn't absolutely necessary in the latter case, but doing so
5034 * is simpler.
5035 */
5036 }
5037 else
5038 {
5039 /* wait for regular transaction to end, or die trying */
5040 switch (wait_policy)
5041 {
5042 case LockWaitBlock:
5043 XactLockTableWait(xwait, relation, &tuple->t_self,
5044 XLTW_Lock);
5045 break;
5046 case LockWaitSkip:
5047 if (!ConditionalXactLockTableWait(xwait, false))
5048 {
5049 result = TM_WouldBlock;
5050 /* recovery code expects to have buffer lock held */
5052 goto failed;
5053 }
5054 break;
5055 case LockWaitError:
5057 ereport(ERROR,
5058 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
5059 errmsg("could not obtain lock on row in relation \"%s\"",
5060 RelationGetRelationName(relation))));
5061 break;
5062 }
5063 }
5064
5065 /* if there are updates, follow the update chain */
5066 if (follow_updates && !HEAP_XMAX_IS_LOCKED_ONLY(infomask))
5067 {
5068 TM_Result res;
5069
5070 res = heap_lock_updated_tuple(relation, tuple, &t_ctid,
5072 mode);
5073 if (res != TM_Ok)
5074 {
5075 result = res;
5076 /* recovery code expects to have buffer lock held */
5078 goto failed;
5079 }
5080 }
5081
5083
5084 /*
5085 * xwait is done, but if xwait had just locked the tuple then some
5086 * other xact could update this tuple before we get to this point.
5087 * Check for xmax change, and start over if so.
5088 */
5089 if (xmax_infomask_changed(tuple->t_data->t_infomask, infomask) ||
5091 xwait))
5092 goto l3;
5093
5094 if (!(infomask & HEAP_XMAX_IS_MULTI))
5095 {
5096 /*
5097 * Otherwise check if it committed or aborted. Note we cannot
5098 * be here if the tuple was only locked by somebody who didn't
5099 * conflict with us; that would have been handled above. So
5100 * that transaction must necessarily be gone by now. But
5101 * don't check for this in the multixact case, because some
5102 * locker transactions might still be running.
5103 */
5104 UpdateXmaxHintBits(tuple->t_data, *buffer, xwait);
5105 }
5106 }
5107
5108 /* By here, we're certain that we hold buffer exclusive lock again */
5109
5110 /*
5111 * We may lock if previous xmax aborted, or if it committed but only
5112 * locked the tuple without updating it; or if we didn't have to wait
5113 * at all for whatever reason.
5114 */
5115 if (!require_sleep ||
5116 (tuple->t_data->t_infomask & HEAP_XMAX_INVALID) ||
5119 result = TM_Ok;
5120 else if (!ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid))
5121 result = TM_Updated;
5122 else
5123 result = TM_Deleted;
5124 }
5125
5126failed:
5127 if (result != TM_Ok)
5128 {
5129 Assert(result == TM_SelfModified || result == TM_Updated ||
5130 result == TM_Deleted || result == TM_WouldBlock);
5131
5132 /*
5133 * When locking a tuple under LockWaitSkip semantics and we fail with
5134 * TM_WouldBlock above, it's possible for concurrent transactions to
5135 * release the lock and set HEAP_XMAX_INVALID in the meantime. So
5136 * this assert is slightly different from the equivalent one in
5137 * heap_delete and heap_update.
5138 */
5139 Assert((result == TM_WouldBlock) ||
5140 !(tuple->t_data->t_infomask & HEAP_XMAX_INVALID));
5141 Assert(result != TM_Updated ||
5142 !ItemPointerEquals(&tuple->t_self, &tuple->t_data->t_ctid));
5143 tmfd->ctid = tuple->t_data->t_ctid;
5144 tmfd->xmax = HeapTupleHeaderGetUpdateXid(tuple->t_data);
5145 if (result == TM_SelfModified)
5146 tmfd->cmax = HeapTupleHeaderGetCmax(tuple->t_data);
5147 else
5148 tmfd->cmax = InvalidCommandId;
5149 goto out_locked;
5150 }
5151
5152 /*
5153 * If we didn't pin the visibility map page and the page has become all
5154 * visible while we were busy locking the buffer, or during some
5155 * subsequent window during which we had it unlocked, we'll have to unlock
5156 * and re-lock, to avoid holding the buffer lock across I/O. That's a bit
5157 * unfortunate, especially since we'll now have to recheck whether the
5158 * tuple has been locked or updated under us, but hopefully it won't
5159 * happen very often.
5160 */
5161 if (vmbuffer == InvalidBuffer && PageIsAllVisible(page))
5162 {
5164 visibilitymap_pin(relation, block, &vmbuffer);
5166 goto l3;
5167 }
5168
5169 xmax = HeapTupleHeaderGetRawXmax(tuple->t_data);
5170 old_infomask = tuple->t_data->t_infomask;
5171
5172 /*
5173 * If this is the first possibly-multixact-able operation in the current
5174 * transaction, set my per-backend OldestMemberMXactId setting. We can be
5175 * certain that the transaction will never become a member of any older
5176 * MultiXactIds than that. (We have to do this even if we end up just
5177 * using our own TransactionId below, since some other backend could
5178 * incorporate our XID into a MultiXact immediately afterwards.)
5179 */
5181
5182 /*
5183 * Compute the new xmax and infomask to store into the tuple. Note we do
5184 * not modify the tuple just yet, because that would leave it in the wrong
5185 * state if multixact.c elogs.
5186 */
5187 compute_new_xmax_infomask(xmax, old_infomask, tuple->t_data->t_infomask2,
5188 GetCurrentTransactionId(), mode, false,
5189 &xid, &new_infomask, &new_infomask2);
5190
5192
5193 /*
5194 * Store transaction information of xact locking the tuple.
5195 *
5196 * Note: Cmax is meaningless in this context, so don't set it; this avoids
5197 * possibly generating a useless combo CID. Moreover, if we're locking a
5198 * previously updated tuple, it's important to preserve the Cmax.
5199 *
5200 * Also reset the HOT UPDATE bit, but only if there's no update; otherwise
5201 * we would break the HOT chain.
5202 */
5203 tuple->t_data->t_infomask &= ~HEAP_XMAX_BITS;
5204 tuple->t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
5205 tuple->t_data->t_infomask |= new_infomask;
5206 tuple->t_data->t_infomask2 |= new_infomask2;
5207 if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
5209 HeapTupleHeaderSetXmax(tuple->t_data, xid);
5210
5211 /*
5212 * Make sure there is no forward chain link in t_ctid. Note that in the
5213 * cases where the tuple has been updated, we must not overwrite t_ctid,
5214 * because it was set by the updater. Moreover, if the tuple has been
5215 * updated, we need to follow the update chain to lock the new versions of
5216 * the tuple as well.
5217 */
5218 if (HEAP_XMAX_IS_LOCKED_ONLY(new_infomask))
5219 tuple->t_data->t_ctid = *tid;
5220
5221 /* Clear only the all-frozen bit on visibility map if needed */
5222 if (PageIsAllVisible(page) &&
5223 visibilitymap_clear(relation, block, vmbuffer,
5225 cleared_all_frozen = true;
5226
5227
5228 MarkBufferDirty(*buffer);
5229
5230 /*
5231 * XLOG stuff. You might think that we don't need an XLOG record because
5232 * there is no state change worth restoring after a crash. You would be
5233 * wrong however: we have just written either a TransactionId or a
5234 * MultiXactId that may never have been seen on disk before, and we need
5235 * to make sure that there are XLOG entries covering those ID numbers.
5236 * Else the same IDs might be re-used after a crash, which would be
5237 * disastrous if this page made it to disk before the crash. Essentially
5238 * we have to enforce the WAL log-before-data rule even in this case.
5239 * (Also, in a PITR log-shipping or 2PC environment, we have to have XLOG
5240 * entries for everything anyway.)
5241 */
5242 if (RelationNeedsWAL(relation))
5243 {
5244 xl_heap_lock xlrec;
5245 XLogRecPtr recptr;
5246
5249
5250 xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
5251 xlrec.xmax = xid;
5252 xlrec.infobits_set = compute_infobits(new_infomask,
5253 tuple->t_data->t_infomask2);
5254 xlrec.flags = cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
5256
5257 /* we don't decode row locks atm, so no need to log the origin */
5258
5259 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_LOCK);
5260
5261 PageSetLSN(page, recptr);
5262 }
5263
5265
5266 result = TM_Ok;
5267
5268out_locked:
5270
5271out_unlocked:
5272 if (BufferIsValid(vmbuffer))
5273 ReleaseBuffer(vmbuffer);
5274
5275 /*
5276 * Don't update the visibility map here. Locking a tuple doesn't change
5277 * visibility info.
5278 */
5279
5280 /*
5281 * Now that we have successfully marked the tuple as locked, we can
5282 * release the lmgr tuple lock, if we had it.
5283 */
5284 if (have_tuple_lock)
5285 UnlockTupleTuplock(relation, tid, mode);
5286
5287 return result;
5288}
5289
5290/*
5291 * Acquire heavyweight lock on the given tuple, in preparation for acquiring
5292 * its normal, Xmax-based tuple lock.
5293 *
5294 * have_tuple_lock is an input and output parameter: on input, it indicates
5295 * whether the lock has previously been acquired (and this function does
5296 * nothing in that case). If this function returns success, have_tuple_lock
5297 * has been flipped to true.
5298 *
5299 * Returns false if it was unable to obtain the lock; this can only happen if
5300 * wait_policy is Skip.
5301 */
5302static bool
5304 LockWaitPolicy wait_policy, bool *have_tuple_lock)
5305{
5306 if (*have_tuple_lock)
5307 return true;
5308
5309 switch (wait_policy)
5310 {
5311 case LockWaitBlock:
5312 LockTupleTuplock(relation, tid, mode);
5313 break;
5314
5315 case LockWaitSkip:
5316 if (!ConditionalLockTupleTuplock(relation, tid, mode, false))
5317 return false;
5318 break;
5319
5320 case LockWaitError:
5322 ereport(ERROR,
5323 (errcode(ERRCODE_LOCK_NOT_AVAILABLE),
5324 errmsg("could not obtain lock on row in relation \"%s\"",
5325 RelationGetRelationName(relation))));
5326 break;
5327 }
5328 *have_tuple_lock = true;
5329
5330 return true;
5331}
5332
5333/*
5334 * Given an original set of Xmax and infomask, and a transaction (identified by
5335 * add_to_xmax) acquiring a new lock of some mode, compute the new Xmax and
5336 * corresponding infomasks to use on the tuple.
5337 *
5338 * Note that this might have side effects such as creating a new MultiXactId.
5339 *
5340 * Most callers will have called HeapTupleSatisfiesUpdate before this function;
5341 * that will have set the HEAP_XMAX_INVALID bit if the xmax was a MultiXactId
5342 * but it was not running anymore. There is a race condition, which is that the
5343 * MultiXactId may have finished since then, but that uncommon case is handled
5344 * either here, or within MultiXactIdExpand.
5345 *
5346 * There is a similar race condition possible when the old xmax was a regular
5347 * TransactionId. We test TransactionIdIsInProgress again just to narrow the
5348 * window, but it's still possible to end up creating an unnecessary
5349 * MultiXactId. Fortunately this is harmless.
5350 */
5351static void
5353 uint16 old_infomask2, TransactionId add_to_xmax,
5354 LockTupleMode mode, bool is_update,
5355 TransactionId *result_xmax, uint16 *result_infomask,
5356 uint16 *result_infomask2)
5357{
5358 TransactionId new_xmax;
5359 uint16 new_infomask,
5360 new_infomask2;
5361
5363
5364l5:
5365 new_infomask = 0;
5366 new_infomask2 = 0;
5367 if (old_infomask & HEAP_XMAX_INVALID)
5368 {
5369 /*
5370 * No previous locker; we just insert our own TransactionId.
5371 *
5372 * Note that it's critical that this case be the first one checked,
5373 * because there are several blocks below that come back to this one
5374 * to implement certain optimizations; old_infomask might contain
5375 * other dirty bits in those cases, but we don't really care.
5376 */
5377 if (is_update)
5378 {
5379 new_xmax = add_to_xmax;
5380 if (mode == LockTupleExclusive)
5381 new_infomask2 |= HEAP_KEYS_UPDATED;
5382 }
5383 else
5384 {
5385 new_infomask |= HEAP_XMAX_LOCK_ONLY;
5386 switch (mode)
5387 {
5388 case LockTupleKeyShare:
5389 new_xmax = add_to_xmax;
5390 new_infomask |= HEAP_XMAX_KEYSHR_LOCK;
5391 break;
5392 case LockTupleShare:
5393 new_xmax = add_to_xmax;
5394 new_infomask |= HEAP_XMAX_SHR_LOCK;
5395 break;
5397 new_xmax = add_to_xmax;
5398 new_infomask |= HEAP_XMAX_EXCL_LOCK;
5399 break;
5400 case LockTupleExclusive:
5401 new_xmax = add_to_xmax;
5402 new_infomask |= HEAP_XMAX_EXCL_LOCK;
5403 new_infomask2 |= HEAP_KEYS_UPDATED;
5404 break;
5405 default:
5406 new_xmax = InvalidTransactionId; /* silence compiler */
5407 elog(ERROR, "invalid lock mode");
5408 }
5409 }
5410 }
5411 else if (old_infomask & HEAP_XMAX_IS_MULTI)
5412 {
5413 MultiXactStatus new_status;
5414
5415 /*
5416 * Currently we don't allow XMAX_COMMITTED to be set for multis, so
5417 * cross-check.
5418 */
5419 Assert(!(old_infomask & HEAP_XMAX_COMMITTED));
5420
5421 /*
5422 * A multixact together with LOCK_ONLY set but neither lock bit set
5423 * (i.e. a pg_upgraded share locked tuple) cannot possibly be running
5424 * anymore. This check is critical for databases upgraded by
5425 * pg_upgrade; both MultiXactIdIsRunning and MultiXactIdExpand assume
5426 * that such multis are never passed.
5427 */
5428 if (HEAP_LOCKED_UPGRADED(old_infomask))
5429 {
5430 old_infomask &= ~HEAP_XMAX_IS_MULTI;
5431 old_infomask |= HEAP_XMAX_INVALID;
5432 goto l5;
5433 }
5434
5435 /*
5436 * If the XMAX is already a MultiXactId, then we need to expand it to
5437 * include add_to_xmax; but if all the members were lockers and are
5438 * all gone, we can do away with the IS_MULTI bit and just set
5439 * add_to_xmax as the only locker/updater. If all lockers are gone
5440 * and we have an updater that aborted, we can also do without a
5441 * multi.
5442 *
5443 * The cost of doing GetMultiXactIdMembers would be paid by
5444 * MultiXactIdExpand if we weren't to do this, so this check is not
5445 * incurring extra work anyhow.
5446 */
5447 if (!MultiXactIdIsRunning(xmax, HEAP_XMAX_IS_LOCKED_ONLY(old_infomask)))
5448 {
5449 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) ||
5451 old_infomask)))
5452 {
5453 /*
5454 * Reset these bits and restart; otherwise fall through to
5455 * create a new multi below.
5456 */
5457 old_infomask &= ~HEAP_XMAX_IS_MULTI;
5458 old_infomask |= HEAP_XMAX_INVALID;
5459 goto l5;
5460 }
5461 }
5462
5463 new_status = get_mxact_status_for_lock(mode, is_update);
5464
5465 new_xmax = MultiXactIdExpand((MultiXactId) xmax, add_to_xmax,
5466 new_status);
5467 GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
5468 }
5469 else if (old_infomask & HEAP_XMAX_COMMITTED)
5470 {
5471 /*
5472 * It's a committed update, so we need to preserve him as updater of
5473 * the tuple.
5474 */
5475 MultiXactStatus status;
5476 MultiXactStatus new_status;
5477
5478 if (old_infomask2 & HEAP_KEYS_UPDATED)
5479 status = MultiXactStatusUpdate;
5480 else
5482
5483 new_status = get_mxact_status_for_lock(mode, is_update);
5484
5485 /*
5486 * since it's not running, it's obviously impossible for the old
5487 * updater to be identical to the current one, so we need not check
5488 * for that case as we do in the block above.
5489 */
5490 new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
5491 GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
5492 }
5493 else if (TransactionIdIsInProgress(xmax))
5494 {
5495 /*
5496 * If the XMAX is a valid, in-progress TransactionId, then we need to
5497 * create a new MultiXactId that includes both the old locker or
5498 * updater and our own TransactionId.
5499 */
5500 MultiXactStatus new_status;
5501 MultiXactStatus old_status;
5502 LockTupleMode old_mode;
5503
5504 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
5505 {
5506 if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
5507 old_status = MultiXactStatusForKeyShare;
5508 else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
5509 old_status = MultiXactStatusForShare;
5510 else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
5511 {
5512 if (old_infomask2 & HEAP_KEYS_UPDATED)
5513 old_status = MultiXactStatusForUpdate;
5514 else
5515 old_status = MultiXactStatusForNoKeyUpdate;
5516 }
5517 else
5518 {
5519 /*
5520 * LOCK_ONLY can be present alone only when a page has been
5521 * upgraded by pg_upgrade. But in that case,
5522 * TransactionIdIsInProgress() should have returned false. We
5523 * assume it's no longer locked in this case.
5524 */
5525 elog(WARNING, "LOCK_ONLY found for Xid in progress %u", xmax);
5526 old_infomask |= HEAP_XMAX_INVALID;
5527 old_infomask &= ~HEAP_XMAX_LOCK_ONLY;
5528 goto l5;
5529 }
5530 }
5531 else
5532 {
5533 /* it's an update, but which kind? */
5534 if (old_infomask2 & HEAP_KEYS_UPDATED)
5535 old_status = MultiXactStatusUpdate;
5536 else
5537 old_status = MultiXactStatusNoKeyUpdate;
5538 }
5539
5540 old_mode = TUPLOCK_from_mxstatus(old_status);
5541
5542 /*
5543 * If the lock to be acquired is for the same TransactionId as the
5544 * existing lock, there's an optimization possible: consider only the
5545 * strongest of both locks as the only one present, and restart.
5546 */
5547 if (xmax == add_to_xmax)
5548 {
5549 /*
5550 * Note that it's not possible for the original tuple to be
5551 * updated: we wouldn't be here because the tuple would have been
5552 * invisible and we wouldn't try to update it. As a subtlety,
5553 * this code can also run when traversing an update chain to lock
5554 * future versions of a tuple. But we wouldn't be here either,
5555 * because the add_to_xmax would be different from the original
5556 * updater.
5557 */
5558 Assert(HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
5559
5560 /* acquire the strongest of both */
5561 if (mode < old_mode)
5562 mode = old_mode;
5563 /* mustn't touch is_update */
5564
5565 old_infomask |= HEAP_XMAX_INVALID;
5566 goto l5;
5567 }
5568
5569 /* otherwise, just fall back to creating a new multixact */
5570 new_status = get_mxact_status_for_lock(mode, is_update);
5571 new_xmax = MultiXactIdCreate(xmax, old_status,
5572 add_to_xmax, new_status);
5573 GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
5574 }
5575 else if (!HEAP_XMAX_IS_LOCKED_ONLY(old_infomask) &&
5577 {
5578 /*
5579 * It's a committed update, so we gotta preserve him as updater of the
5580 * tuple.
5581 */
5582 MultiXactStatus status;
5583 MultiXactStatus new_status;
5584
5585 if (old_infomask2 & HEAP_KEYS_UPDATED)
5586 status = MultiXactStatusUpdate;
5587 else
5589
5590 new_status = get_mxact_status_for_lock(mode, is_update);
5591
5592 /*
5593 * since it's not running, it's obviously impossible for the old
5594 * updater to be identical to the current one, so we need not check
5595 * for that case as we do in the block above.
5596 */
5597 new_xmax = MultiXactIdCreate(xmax, status, add_to_xmax, new_status);
5598 GetMultiXactIdHintBits(new_xmax, &new_infomask, &new_infomask2);
5599 }
5600 else
5601 {
5602 /*
5603 * Can get here iff the locking/updating transaction was running when
5604 * the infomask was extracted from the tuple, but finished before
5605 * TransactionIdIsInProgress got to run. Deal with it as if there was
5606 * no locker at all in the first place.
5607 */
5608 old_infomask |= HEAP_XMAX_INVALID;
5609 goto l5;
5610 }
5611
5612 *result_infomask = new_infomask;
5613 *result_infomask2 = new_infomask2;
5614 *result_xmax = new_xmax;
5615}
5616
5617/*
5618 * Subroutine for heap_lock_updated_tuple_rec.
5619 *
5620 * Given a hypothetical multixact status held by the transaction identified
5621 * with the given xid, does the current transaction need to wait, fail, or can
5622 * it continue if it wanted to acquire a lock of the given mode? "needwait"
5623 * is set to true if waiting is necessary; if it can continue, then TM_Ok is
5624 * returned. If the lock is already held by the current transaction, return
5625 * TM_SelfModified. In case of a conflict with another transaction, a
5626 * different HeapTupleSatisfiesUpdate return code is returned.
5627 *
5628 * The held status is said to be hypothetical because it might correspond to a
5629 * lock held by a single Xid, i.e. not a real MultiXactId; we express it this
5630 * way for simplicity of API.
5631 */
5632static TM_Result
5635 bool *needwait)
5636{
5637 MultiXactStatus wantedstatus;
5638
5639 *needwait = false;
5640 wantedstatus = get_mxact_status_for_lock(mode, false);
5641
5642 /*
5643 * Note: we *must* check TransactionIdIsInProgress before
5644 * TransactionIdDidAbort/Commit; see comment at top of heapam_visibility.c
5645 * for an explanation.
5646 */
5648 {
5649 /*
5650 * The tuple has already been locked by our own transaction. This is
5651 * very rare but can happen if multiple transactions are trying to
5652 * lock an ancient version of the same tuple.
5653 */
5654 return TM_SelfModified;
5655 }
5656 else if (TransactionIdIsInProgress(xid))
5657 {
5658 /*
5659 * If the locking transaction is running, what we do depends on
5660 * whether the lock modes conflict: if they do, then we must wait for
5661 * it to finish; otherwise we can fall through to lock this tuple
5662 * version without waiting.
5663 */
5665 LOCKMODE_from_mxstatus(wantedstatus)))
5666 {
5667 *needwait = true;
5668 }
5669
5670 /*
5671 * If we set needwait above, then this value doesn't matter;
5672 * otherwise, this value signals to caller that it's okay to proceed.
5673 */
5674 return TM_Ok;
5675 }
5676 else if (TransactionIdDidAbort(xid))
5677 return TM_Ok;
5678 else if (TransactionIdDidCommit(xid))
5679 {
5680 /*
5681 * The other transaction committed. If it was only a locker, then the
5682 * lock is completely gone now and we can return success; but if it
5683 * was an update, then what we do depends on whether the two lock
5684 * modes conflict. If they conflict, then we must report error to
5685 * caller. But if they don't, we can fall through to allow the current
5686 * transaction to lock the tuple.
5687 *
5688 * Note: the reason we worry about ISUPDATE here is because as soon as
5689 * a transaction ends, all its locks are gone and meaningless, and
5690 * thus we can ignore them; whereas its updates persist. In the
5691 * TransactionIdIsInProgress case, above, we don't need to check
5692 * because we know the lock is still "alive" and thus a conflict needs
5693 * always be checked.
5694 */
5695 if (!ISUPDATE_from_mxstatus(status))
5696 return TM_Ok;
5697
5699 LOCKMODE_from_mxstatus(wantedstatus)))
5700 {
5701 /* bummer */
5702 if (!ItemPointerEquals(&tup->t_self, &tup->t_data->t_ctid))
5703 return TM_Updated;
5704 else
5705 return TM_Deleted;
5706 }
5707
5708 return TM_Ok;
5709 }
5710
5711 /* Not in progress, not aborted, not committed -- must have crashed */
5712 return TM_Ok;
5713}
5714
5715
5716/*
5717 * Recursive part of heap_lock_updated_tuple
5718 *
5719 * Fetch the tuple pointed to by tid in rel, and mark it as locked by the given
5720 * xid with the given mode; if this tuple is updated, recurse to lock the new
5721 * version as well.
5722 */
5723static TM_Result
5726{
5727 TM_Result result;
5728 ItemPointerData tupid;
5729 HeapTupleData mytup;
5730 Buffer buf;
5731 uint16 new_infomask,
5732 new_infomask2,
5733 old_infomask,
5734 old_infomask2;
5735 TransactionId xmax,
5736 new_xmax;
5738 bool cleared_all_frozen = false;
5739 bool pinned_desired_page;
5740 Buffer vmbuffer = InvalidBuffer;
5741 BlockNumber block;
5742
5743 ItemPointerCopy(tid, &tupid);
5744
5745 for (;;)
5746 {
5747 new_infomask = 0;
5748 new_xmax = InvalidTransactionId;
5749 block = ItemPointerGetBlockNumber(&tupid);
5750 ItemPointerCopy(&tupid, &(mytup.t_self));
5751
5752 if (!heap_fetch(rel, SnapshotAny, &mytup, &buf, false))
5753 {
5754 /*
5755 * if we fail to find the updated version of the tuple, it's
5756 * because it was vacuumed/pruned away after its creator
5757 * transaction aborted. So behave as if we got to the end of the
5758 * chain, and there's no further tuple to lock: return success to
5759 * caller.
5760 */
5761 result = TM_Ok;
5762 goto out_unlocked;
5763 }
5764
5765l4:
5767
5768 /*
5769 * Before locking the buffer, pin the visibility map page if it
5770 * appears to be necessary. Since we haven't got the lock yet,
5771 * someone else might be in the middle of changing this, so we'll need
5772 * to recheck after we have the lock.
5773 */
5775 {
5776 visibilitymap_pin(rel, block, &vmbuffer);
5777 pinned_desired_page = true;
5778 }
5779 else
5780 pinned_desired_page = false;
5781
5783
5784 /*
5785 * If we didn't pin the visibility map page and the page has become
5786 * all visible while we were busy locking the buffer, we'll have to
5787 * unlock and re-lock, to avoid holding the buffer lock across I/O.
5788 * That's a bit unfortunate, but hopefully shouldn't happen often.
5789 *
5790 * Note: in some paths through this function, we will reach here
5791 * holding a pin on a vm page that may or may not be the one matching
5792 * this page. If this page isn't all-visible, we won't use the vm
5793 * page, but we hold onto such a pin till the end of the function.
5794 */
5795 if (!pinned_desired_page && PageIsAllVisible(BufferGetPage(buf)))
5796 {
5798 visibilitymap_pin(rel, block, &vmbuffer);
5800 }
5801
5802 /*
5803 * Check the tuple XMIN against prior XMAX, if any. If we reached the
5804 * end of the chain, we're done, so return success.
5805 */
5806 if (TransactionIdIsValid(priorXmax) &&
5808 priorXmax))
5809 {
5810 result = TM_Ok;
5811 goto out_locked;
5812 }
5813
5814 /*
5815 * Also check Xmin: if this tuple was created by an aborted
5816 * (sub)transaction, then we already locked the last live one in the
5817 * chain, thus we're done, so return success.
5818 */
5820 {
5821 result = TM_Ok;
5822 goto out_locked;
5823 }
5824
5825 old_infomask = mytup.t_data->t_infomask;
5826 old_infomask2 = mytup.t_data->t_infomask2;
5827 xmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
5828
5829 /*
5830 * If this tuple version has been updated or locked by some concurrent
5831 * transaction(s), what we do depends on whether our lock mode
5832 * conflicts with what those other transactions hold, and also on the
5833 * status of them.
5834 */
5835 if (!(old_infomask & HEAP_XMAX_INVALID))
5836 {
5837 TransactionId rawxmax;
5838 bool needwait;
5839
5840 rawxmax = HeapTupleHeaderGetRawXmax(mytup.t_data);
5841 if (old_infomask & HEAP_XMAX_IS_MULTI)
5842 {
5843 int nmembers;
5844 int i;
5845 MultiXactMember *members;
5846
5847 /*
5848 * We don't need a test for pg_upgrade'd tuples: this is only
5849 * applied to tuples after the first in an update chain. Said
5850 * first tuple in the chain may well be locked-in-9.2-and-
5851 * pg_upgraded, but that one was already locked by our caller,
5852 * not us; and any subsequent ones cannot be because our
5853 * caller must necessarily have obtained a snapshot later than
5854 * the pg_upgrade itself.
5855 */
5857
5858 nmembers = GetMultiXactIdMembers(rawxmax, &members, false,
5859 HEAP_XMAX_IS_LOCKED_ONLY(old_infomask));
5860 for (i = 0; i < nmembers; i++)
5861 {
5862 result = test_lockmode_for_conflict(members[i].status,
5863 members[i].xid,
5864 mode,
5865 &mytup,
5866 &needwait);
5867
5868 /*
5869 * If the tuple was already locked by ourselves in a
5870 * previous iteration of this (say heap_lock_tuple was
5871 * forced to restart the locking loop because of a change
5872 * in xmax), then we hold the lock already on this tuple
5873 * version and we don't need to do anything; and this is
5874 * not an error condition either. We just need to skip
5875 * this tuple and continue locking the next version in the
5876 * update chain.
5877 */
5878 if (result == TM_SelfModified)
5879 {
5880 pfree(members);
5881 goto next;
5882 }
5883
5884 if (needwait)
5885 {
5887 XactLockTableWait(members[i].xid, rel,
5888 &mytup.t_self,
5890 pfree(members);
5891 goto l4;
5892 }
5893 if (result != TM_Ok)
5894 {
5895 pfree(members);
5896 goto out_locked;
5897 }
5898 }
5899 if (members)
5900 pfree(members);
5901 }
5902 else
5903 {
5904 MultiXactStatus status;
5905
5906 /*
5907 * For a non-multi Xmax, we first need to compute the
5908 * corresponding MultiXactStatus by using the infomask bits.
5909 */
5910 if (HEAP_XMAX_IS_LOCKED_ONLY(old_infomask))
5911 {
5912 if (HEAP_XMAX_IS_KEYSHR_LOCKED(old_infomask))
5914 else if (HEAP_XMAX_IS_SHR_LOCKED(old_infomask))
5915 status = MultiXactStatusForShare;
5916 else if (HEAP_XMAX_IS_EXCL_LOCKED(old_infomask))
5917 {
5918 if (old_infomask2 & HEAP_KEYS_UPDATED)
5919 status = MultiXactStatusForUpdate;
5920 else
5922 }
5923 else
5924 {
5925 /*
5926 * LOCK_ONLY present alone (a pg_upgraded tuple marked
5927 * as share-locked in the old cluster) shouldn't be
5928 * seen in the middle of an update chain.
5929 */
5930 elog(ERROR, "invalid lock status in tuple");
5931 }
5932 }
5933 else
5934 {
5935 /* it's an update, but which kind? */
5936 if (old_infomask2 & HEAP_KEYS_UPDATED)
5937 status = MultiXactStatusUpdate;
5938 else
5940 }
5941
5942 result = test_lockmode_for_conflict(status, rawxmax, mode,
5943 &mytup, &needwait);
5944
5945 /*
5946 * If the tuple was already locked by ourselves in a previous
5947 * iteration of this (say heap_lock_tuple was forced to
5948 * restart the locking loop because of a change in xmax), then
5949 * we hold the lock already on this tuple version and we don't
5950 * need to do anything; and this is not an error condition
5951 * either. We just need to skip this tuple and continue
5952 * locking the next version in the update chain.
5953 */
5954 if (result == TM_SelfModified)
5955 goto next;
5956
5957 if (needwait)
5958 {
5960 XactLockTableWait(rawxmax, rel, &mytup.t_self,
5962 goto l4;
5963 }
5964 if (result != TM_Ok)
5965 {
5966 goto out_locked;
5967 }
5968 }
5969 }
5970
5971 /* compute the new Xmax and infomask values for the tuple ... */
5972 compute_new_xmax_infomask(xmax, old_infomask, mytup.t_data->t_infomask2,
5973 xid, mode, false,
5974 &new_xmax, &new_infomask, &new_infomask2);
5975
5977 visibilitymap_clear(rel, block, vmbuffer,
5979 cleared_all_frozen = true;
5980
5982
5983 /* ... and set them */
5984 HeapTupleHeaderSetXmax(mytup.t_data, new_xmax);
5985 mytup.t_data->t_infomask &= ~HEAP_XMAX_BITS;
5986 mytup.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
5987 mytup.t_data->t_infomask |= new_infomask;
5988 mytup.t_data->t_infomask2 |= new_infomask2;
5989
5991
5992 /* XLOG stuff */
5993 if (RelationNeedsWAL(rel))
5994 {
5996 XLogRecPtr recptr;
5997 Page page = BufferGetPage(buf);
5998
6001
6003 xlrec.xmax = new_xmax;
6004 xlrec.infobits_set = compute_infobits(new_infomask, new_infomask2);
6005 xlrec.flags =
6006 cleared_all_frozen ? XLH_LOCK_ALL_FROZEN_CLEARED : 0;
6007
6009
6010 recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_LOCK_UPDATED);
6011
6012 PageSetLSN(page, recptr);
6013 }
6014
6016
6017next:
6018 /* if we find the end of update chain, we're done. */
6019 if (mytup.t_data->t_infomask & HEAP_XMAX_INVALID ||
6021 ItemPointerEquals(&mytup.t_self, &mytup.t_data->t_ctid) ||
6023 {
6024 result = TM_Ok;
6025 goto out_locked;
6026 }
6027
6028 /* tail recursion */
6029 priorXmax = HeapTupleHeaderGetUpdateXid(mytup.t_data);
6030 ItemPointerCopy(&(mytup.t_data->t_ctid), &tupid);
6032 }
6033
6034 result = TM_Ok;
6035
6036out_locked:
6038
6039out_unlocked:
6040 if (vmbuffer != InvalidBuffer)
6041 ReleaseBuffer(vmbuffer);
6042
6043 return result;
6044}
6045
6046/*
6047 * heap_lock_updated_tuple
6048 * Follow update chain when locking an updated tuple, acquiring locks (row
6049 * marks) on the updated versions.
6050 *
6051 * The initial tuple is assumed to be already locked.
6052 *
6053 * This function doesn't check visibility, it just unconditionally marks the
6054 * tuple(s) as locked. If any tuple in the updated chain is being deleted
6055 * concurrently (or updated with the key being modified), sleep until the
6056 * transaction doing it is finished.
6057 *
6058 * Note that we don't acquire heavyweight tuple locks on the tuples we walk
6059 * when we have to wait for other transactions to release them, as opposed to
6060 * what heap_lock_tuple does. The reason is that having more than one
6061 * transaction walking the chain is probably uncommon enough that risk of
6062 * starvation is not likely: one of the preconditions for being here is that
6063 * the snapshot in use predates the update that created this tuple (because we
6064 * started at an earlier version of the tuple), but at the same time such a
6065 * transaction cannot be using repeatable read or serializable isolation
6066 * levels, because that would lead to a serializability failure.
6067 */
6068static TM_Result
6071{
6072 /*
6073 * If the tuple has not been updated, or has moved into another partition
6074 * (effectively a delete) stop here.
6075 */
6077 !ItemPointerEquals(&tuple->t_self, ctid))
6078 {
6079 /*
6080 * If this is the first possibly-multixact-able operation in the
6081 * current transaction, set my per-backend OldestMemberMXactId
6082 * setting. We can be certain that the transaction will never become a
6083 * member of any older MultiXactIds than that. (We have to do this
6084 * even if we end up just using our own TransactionId below, since
6085 * some other backend could incorporate our XID into a MultiXact
6086 * immediately afterwards.)
6087 */
6089
6090 return heap_lock_updated_tuple_rec(rel, ctid, xid, mode);
6091 }
6092
6093 /* nothing to lock */
6094 return TM_Ok;
6095}
6096
6097/*
6098 * heap_finish_speculative - mark speculative insertion as successful
6099 *
6100 * To successfully finish a speculative insertion we have to clear speculative
6101 * token from tuple. To do so the t_ctid field, which will contain a
6102 * speculative token value, is modified in place to point to the tuple itself,
6103 * which is characteristic of a newly inserted ordinary tuple.
6104 *
6105 * NB: It is not ok to commit without either finishing or aborting a
6106 * speculative insertion. We could treat speculative tuples of committed
6107 * transactions implicitly as completed, but then we would have to be prepared
6108 * to deal with speculative tokens on committed tuples. That wouldn't be
6109 * difficult - no-one looks at the ctid field of a tuple with invalid xmax -
6110 * but clearing the token at completion isn't very expensive either.
6111 * An explicit confirmation WAL record also makes logical decoding simpler.
6112 */
6113void
6115{
6116 Buffer buffer;
6117 Page page;
6118 OffsetNumber offnum;
6119 ItemId lp = NULL;
6120 HeapTupleHeader htup;
6121
6122 buffer = ReadBuffer(relation, ItemPointerGetBlockNumber(tid));
6124 page = BufferGetPage(buffer);
6125
6126 offnum = ItemPointerGetOffsetNumber(tid);
6127 if (PageGetMaxOffsetNumber(page) >= offnum)
6128 lp = PageGetItemId(page, offnum);
6129
6130 if (PageGetMaxOffsetNumber(page) < offnum || !ItemIdIsNormal(lp))
6131 elog(ERROR, "invalid lp");
6132
6133 htup = (HeapTupleHeader) PageGetItem(page, lp);
6134
6135 /* NO EREPORT(ERROR) from here till changes are logged */
6137
6139
6140 MarkBufferDirty(buffer);
6141
6142 /*
6143 * Replace the speculative insertion token with a real t_ctid, pointing to
6144 * itself like it does on regular tuples.
6145 */
6146 htup->t_ctid = *tid;
6147
6148 /* XLOG stuff */
6149 if (RelationNeedsWAL(relation))
6150 {
6151 xl_heap_confirm xlrec;
6152 XLogRecPtr recptr;
6153
6155
6157
6158 /* We want the same filtering on this as on a plain insert */
6160
6163
6164 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_CONFIRM);
6165
6166 PageSetLSN(page, recptr);
6167 }
6168
6170
6171 UnlockReleaseBuffer(buffer);
6172}
6173
6174/*
6175 * heap_abort_speculative - kill a speculatively inserted tuple
6176 *
6177 * Marks a tuple that was speculatively inserted in the same command as dead,
6178 * by setting its xmin as invalid. That makes it immediately appear as dead
6179 * to all transactions, including our own. In particular, it makes
6180 * HeapTupleSatisfiesDirty() regard the tuple as dead, so that another backend
6181 * inserting a duplicate key value won't unnecessarily wait for our whole
6182 * transaction to finish (it'll just wait for our speculative insertion to
6183 * finish).
6184 *
6185 * Killing the tuple prevents "unprincipled deadlocks", which are deadlocks
6186 * that arise due to a mutual dependency that is not user visible. By
6187 * definition, unprincipled deadlocks cannot be prevented by the user
6188 * reordering lock acquisition in client code, because the implementation level
6189 * lock acquisitions are not under the user's direct control. If speculative
6190 * inserters did not take this precaution, then under high concurrency they
6191 * could deadlock with each other, which would not be acceptable.
6192 *
6193 * This is somewhat redundant with heap_delete, but we prefer to have a
6194 * dedicated routine with stripped down requirements. Note that this is also
6195 * used to delete the TOAST tuples created during speculative insertion.
6196 *
6197 * This routine does not affect logical decoding as it only looks at
6198 * confirmation records.
6199 */
6200void
6202{
6204 ItemId lp;
6205 HeapTupleData tp;
6206 Page page;
6207 BlockNumber block;
6208 Buffer buffer;
6209
6211
6212 block = ItemPointerGetBlockNumber(tid);
6213 buffer = ReadBuffer(relation, block);
6214 page = BufferGetPage(buffer);
6215
6217
6218 /*
6219 * Page can't be all visible, we just inserted into it, and are still
6220 * running.
6221 */
6222 Assert(!PageIsAllVisible(page));
6223
6226
6227 tp.t_tableOid = RelationGetRelid(relation);
6228 tp.t_data = (HeapTupleHeader) PageGetItem(page, lp);
6229 tp.t_len = ItemIdGetLength(lp);
6230 tp.t_self = *tid;
6231
6232 /*
6233 * Sanity check that the tuple really is a speculatively inserted tuple,
6234 * inserted by us.
6235 */
6236 if (tp.t_data->t_choice.t_heap.t_xmin != xid)
6237 elog(ERROR, "attempted to kill a tuple inserted by another transaction");
6238 if (!(IsToastRelation(relation) || HeapTupleHeaderIsSpeculative(tp.t_data)))
6239 elog(ERROR, "attempted to kill a non-speculative tuple");
6241
6242 /*
6243 * No need to check for serializable conflicts here. There is never a
6244 * need for a combo CID, either. No need to extract replica identity, or
6245 * do anything special with infomask bits.
6246 */
6247
6249
6250 /*
6251 * The tuple will become DEAD immediately. Flag that this page is a
6252 * candidate for pruning by setting xmin to TransactionXmin. While not
6253 * immediately prunable, it is the oldest xid we can cheaply determine
6254 * that's safe against wraparound / being older than the table's
6255 * relfrozenxid. To defend against the unlikely case of a new relation
6256 * having a newer relfrozenxid than our TransactionXmin, use relfrozenxid
6257 * if so (vacuum can't subsequently move relfrozenxid to beyond
6258 * TransactionXmin, so there's no race here).
6259 */
6261 {
6262 TransactionId relfrozenxid = relation->rd_rel->relfrozenxid;
6263 TransactionId prune_xid;
6264
6265 if (TransactionIdPrecedes(TransactionXmin, relfrozenxid))
6266 prune_xid = relfrozenxid;
6267 else
6268 prune_xid = TransactionXmin;
6269 PageSetPrunable(page, prune_xid);
6270 }
6271
6272 /* store transaction information of xact deleting the tuple */
6274 tp.t_data->t_infomask2 &= ~HEAP_KEYS_UPDATED;
6275
6276 /*
6277 * Set the tuple header xmin to InvalidTransactionId. This makes the
6278 * tuple immediately invisible everyone. (In particular, to any
6279 * transactions waiting on the speculative token, woken up later.)
6280 */
6282
6283 /* Clear the speculative insertion token too */
6284 tp.t_data->t_ctid = tp.t_self;
6285
6286 MarkBufferDirty(buffer);
6287
6288 /*
6289 * XLOG stuff
6290 *
6291 * The WAL records generated here match heap_delete(). The same recovery
6292 * routines are used.
6293 */
6294 if (RelationNeedsWAL(relation))
6295 {
6296 xl_heap_delete xlrec;
6297 XLogRecPtr recptr;
6298
6299 xlrec.flags = XLH_DELETE_IS_SUPER;
6301 tp.t_data->t_infomask2);
6303 xlrec.xmax = xid;
6304
6308
6309 /* No replica identity & replication origin logged */
6310
6311 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_DELETE);
6312
6313 PageSetLSN(page, recptr);
6314 }
6315
6317
6319
6320 if (HeapTupleHasExternal(&tp))
6321 {
6322 Assert(!IsToastRelation(relation));
6323 heap_toast_delete(relation, &tp, true);
6324 }
6325
6326 /*
6327 * Never need to mark tuple for invalidation, since catalogs don't support
6328 * speculative insertion
6329 */
6330
6331 /* Now we can release the buffer */
6332 ReleaseBuffer(buffer);
6333
6334 /* count deletion, as we counted the insertion too */
6335 pgstat_count_heap_delete(relation);
6336}
6337
6338/*
6339 * heap_inplace_lock - protect inplace update from concurrent heap_update()
6340 *
6341 * Evaluate whether the tuple's state is compatible with a no-key update.
6342 * Current transaction rowmarks are fine, as is KEY SHARE from any
6343 * transaction. If compatible, return true with the buffer exclusive-locked,
6344 * and the caller must release that by calling
6345 * heap_inplace_update_and_unlock(), calling heap_inplace_unlock(), or raising
6346 * an error. Otherwise, call release_callback(arg), wait for blocking
6347 * transactions to end, and return false.
6348 *
6349 * Since this is intended for system catalogs and SERIALIZABLE doesn't cover
6350 * DDL, this doesn't guarantee any particular predicate locking.
6351 *
6352 * One could modify this to return true for tuples with delete in progress,
6353 * All inplace updaters take a lock that conflicts with DROP. If explicit
6354 * "DELETE FROM pg_class" is in progress, we'll wait for it like we would an
6355 * update.
6356 *
6357 * Readers of inplace-updated fields expect changes to those fields are
6358 * durable. For example, vac_truncate_clog() reads datfrozenxid from
6359 * pg_database tuples via catalog snapshots. A future snapshot must not
6360 * return a lower datfrozenxid for the same database OID (lower in the
6361 * FullTransactionIdPrecedes() sense). We achieve that since no update of a
6362 * tuple can start while we hold a lock on its buffer. In cases like
6363 * BEGIN;GRANT;CREATE INDEX;COMMIT we're inplace-updating a tuple visible only
6364 * to this transaction. ROLLBACK then is one case where it's okay to lose
6365 * inplace updates. (Restoring relhasindex=false on ROLLBACK is fine, since
6366 * any concurrent CREATE INDEX would have blocked, then inplace-updated the
6367 * committed tuple.)
6368 *
6369 * In principle, we could avoid waiting by overwriting every tuple in the
6370 * updated tuple chain. Reader expectations permit updating a tuple only if
6371 * it's aborted, is the tail of the chain, or we already updated the tuple
6372 * referenced in its t_ctid. Hence, we would need to overwrite the tuples in
6373 * order from tail to head. That would imply either (a) mutating all tuples
6374 * in one critical section or (b) accepting a chance of partial completion.
6375 * Partial completion of a relfrozenxid update would have the weird
6376 * consequence that the table's next VACUUM could see the table's relfrozenxid
6377 * move forward between vacuum_get_cutoffs() and finishing.
6378 */
6379bool
6381 HeapTuple oldtup_ptr, Buffer buffer,
6382 void (*release_callback) (void *), void *arg)
6383{
6384 HeapTupleData oldtup = *oldtup_ptr; /* minimize diff vs. heap_update() */
6385 TM_Result result;
6386 bool ret;
6387
6388#ifdef USE_ASSERT_CHECKING
6389 if (RelationGetRelid(relation) == RelationRelationId)
6390 check_inplace_rel_lock(oldtup_ptr);
6391#endif
6392
6393 Assert(BufferIsValid(buffer));
6394
6395 /*
6396 * Construct shared cache inval if necessary. Because we pass a tuple
6397 * version without our own inplace changes or inplace changes other
6398 * sessions complete while we wait for locks, inplace update mustn't
6399 * change catcache lookup keys. But we aren't bothering with index
6400 * updates either, so that's true a fortiori. After LockBuffer(), it
6401 * would be too late, because this might reach a
6402 * CatalogCacheInitializeCache() that locks "buffer".
6403 */
6404 CacheInvalidateHeapTupleInplace(relation, oldtup_ptr, NULL);
6405
6406 LockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
6408
6409 /*----------
6410 * Interpret HeapTupleSatisfiesUpdate() like heap_update() does, except:
6411 *
6412 * - wait unconditionally
6413 * - already locked tuple above, since inplace needs that unconditionally
6414 * - don't recheck header after wait: simpler to defer to next iteration
6415 * - don't try to continue even if the updater aborts: likewise
6416 * - no crosscheck
6417 */
6418 result = HeapTupleSatisfiesUpdate(&oldtup, GetCurrentCommandId(false),
6419 buffer);
6420
6421 if (result == TM_Invisible)
6422 {
6423 /* no known way this can happen */
6424 ereport(ERROR,
6425 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
6426 errmsg_internal("attempted to overwrite invisible tuple")));
6427 }
6428 else if (result == TM_SelfModified)
6429 {
6430 /*
6431 * CREATE INDEX might reach this if an expression is silly enough to
6432 * call e.g. SELECT ... FROM pg_class FOR SHARE. C code of other SQL
6433 * statements might get here after a heap_update() of the same row, in
6434 * the absence of an intervening CommandCounterIncrement().
6435 */
6436 ereport(ERROR,
6437 (errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
6438 errmsg("tuple to be updated was already modified by an operation triggered by the current command")));
6439 }
6440 else if (result == TM_BeingModified)
6441 {
6442 TransactionId xwait;
6443 uint16 infomask;
6444
6445 xwait = HeapTupleHeaderGetRawXmax(oldtup.t_data);
6446 infomask = oldtup.t_data->t_infomask;
6447
6448 if (infomask & HEAP_XMAX_IS_MULTI)
6449 {
6452 int remain;
6453
6454 if (DoesMultiXactIdConflict((MultiXactId) xwait, infomask,
6455 lockmode, NULL))
6456 {
6458 release_callback(arg);
6459 ret = false;
6460 MultiXactIdWait((MultiXactId) xwait, mxact_status, infomask,
6461 relation, &oldtup.t_self, XLTW_Update,
6462 &remain);
6463 }
6464 else
6465 ret = true;
6466 }
6468 ret = true;
6469 else if (HEAP_XMAX_IS_KEYSHR_LOCKED(infomask))
6470 ret = true;
6471 else
6472 {
6474 release_callback(arg);
6475 ret = false;
6476 XactLockTableWait(xwait, relation, &oldtup.t_self,
6477 XLTW_Update);
6478 }
6479 }
6480 else
6481 {
6482 ret = (result == TM_Ok);
6483 if (!ret)
6484 {
6486 release_callback(arg);
6487 }
6488 }
6489
6490 /*
6491 * GetCatalogSnapshot() relies on invalidation messages to know when to
6492 * take a new snapshot. COMMIT of xwait is responsible for sending the
6493 * invalidation. We're not acquiring heavyweight locks sufficient to
6494 * block if not yet sent, so we must take a new snapshot to ensure a later
6495 * attempt has a fair chance. While we don't need this if xwait aborted,
6496 * don't bother optimizing that.
6497 */
6498 if (!ret)
6499 {
6500 UnlockTuple(relation, &oldtup.t_self, InplaceUpdateTupleLock);
6503 }
6504 return ret;
6505}
6506
6507/*
6508 * heap_inplace_update_and_unlock - core of systable_inplace_update_finish
6509 *
6510 * The tuple cannot change size, and therefore its header fields and null
6511 * bitmap (if any) don't change either.
6512 *
6513 * Since we hold LOCKTAG_TUPLE, no updater has a local copy of this tuple.
6514 */
6515void
6517 HeapTuple oldtup, HeapTuple tuple,
6518 Buffer buffer)
6519{
6520 HeapTupleHeader htup = oldtup->t_data;
6521 uint32 oldlen;
6522 uint32 newlen;
6523 char *dst;
6524 char *src;
6525 int nmsgs = 0;
6526 SharedInvalidationMessage *invalMessages = NULL;
6527 bool RelcacheInitFileInval = false;
6528
6529 Assert(ItemPointerEquals(&oldtup->t_self, &tuple->t_self));
6530 oldlen = oldtup->t_len - htup->t_hoff;
6531 newlen = tuple->t_len - tuple->t_data->t_hoff;
6532 if (oldlen != newlen || htup->t_hoff != tuple->t_data->t_hoff)
6533 elog(ERROR, "wrong tuple length");
6534
6535 dst = (char *) htup + htup->t_hoff;
6536 src = (char *) tuple->t_data + tuple->t_data->t_hoff;
6537
6538 /* Like RecordTransactionCommit(), log only if needed */
6540 nmsgs = inplaceGetInvalidationMessages(&invalMessages,
6541 &RelcacheInitFileInval);
6542
6543 /*
6544 * Unlink relcache init files as needed. If unlinking, acquire
6545 * RelCacheInitLock until after associated invalidations. By doing this
6546 * in advance, if we checkpoint and then crash between inplace
6547 * XLogInsert() and inval, we don't rely on StartupXLOG() ->
6548 * RelationCacheInitFileRemove(). That uses elevel==LOG, so replay would
6549 * neglect to PANIC on EIO.
6550 */
6552
6553 /*----------
6554 * NO EREPORT(ERROR) from here till changes are complete
6555 *
6556 * Our buffer lock won't stop a reader having already pinned and checked
6557 * visibility for this tuple. Hence, we write WAL first, then mutate the
6558 * buffer. Like in MarkBufferDirtyHint() or RecordTransactionCommit(),
6559 * checkpoint delay makes that acceptable. With the usual order of
6560 * changes, a crash after memcpy() and before XLogInsert() could allow
6561 * datfrozenxid to overtake relfrozenxid:
6562 *
6563 * ["D" is a VACUUM (ONLY_DATABASE_STATS)]
6564 * ["R" is a VACUUM tbl]
6565 * D: vac_update_datfrozenxid() -> systable_beginscan(pg_class)
6566 * D: systable_getnext() returns pg_class tuple of tbl
6567 * R: memcpy() into pg_class tuple of tbl
6568 * D: raise pg_database.datfrozenxid, XLogInsert(), finish
6569 * [crash]
6570 * [recovery restores datfrozenxid w/o relfrozenxid]
6571 *
6572 * Mimic MarkBufferDirtyHint() subroutine XLogSaveBufferForHint().
6573 * Specifically, use DELAY_CHKPT_START, and copy the buffer to the stack.
6574 * The stack copy facilitates a FPI of the post-mutation block before we
6575 * accept other sessions seeing it. DELAY_CHKPT_START allows us to
6576 * XLogInsert() before MarkBufferDirty(). Since XLogSaveBufferForHint()
6577 * can operate under BUFFER_LOCK_SHARED, it can't avoid DELAY_CHKPT_START.
6578 * This function, however, likely could avoid it with the following order
6579 * of operations: MarkBufferDirty(), XLogInsert(), memcpy(). Opt to use
6580 * DELAY_CHKPT_START here, too, as a way to have fewer distinct code
6581 * patterns to analyze. Inplace update isn't so frequent that it should
6582 * pursue the small optimization of skipping DELAY_CHKPT_START.
6583 */
6587
6588 /* XLOG stuff */
6589 if (RelationNeedsWAL(relation))
6590 {
6591 xl_heap_inplace xlrec;
6592 PGAlignedBlock copied_buffer;
6593 char *origdata = (char *) BufferGetBlock(buffer);
6594 Page page = BufferGetPage(buffer);
6595 uint16 lower = ((PageHeader) page)->pd_lower;
6596 uint16 upper = ((PageHeader) page)->pd_upper;
6597 uintptr_t dst_offset_in_block;
6598 RelFileLocator rlocator;
6599 ForkNumber forkno;
6600 BlockNumber blkno;
6601 XLogRecPtr recptr;
6602
6603 xlrec.offnum = ItemPointerGetOffsetNumber(&tuple->t_self);
6604 xlrec.dbId = MyDatabaseId;
6605 xlrec.tsId = MyDatabaseTableSpace;
6606 xlrec.relcacheInitFileInval = RelcacheInitFileInval;
6607 xlrec.nmsgs = nmsgs;
6608
6611 if (nmsgs != 0)
6612 XLogRegisterData(invalMessages,
6613 nmsgs * sizeof(SharedInvalidationMessage));
6614
6615 /* register block matching what buffer will look like after changes */
6616 memcpy(copied_buffer.data, origdata, lower);
6617 memcpy(copied_buffer.data + upper, origdata + upper, BLCKSZ - upper);
6618 dst_offset_in_block = dst - origdata;
6619 memcpy(copied_buffer.data + dst_offset_in_block, src, newlen);
6620 BufferGetTag(buffer, &rlocator, &forkno, &blkno);
6621 Assert(forkno == MAIN_FORKNUM);
6622 XLogRegisterBlock(0, &rlocator, forkno, blkno, copied_buffer.data,
6624 XLogRegisterBufData(0, src, newlen);
6625
6626 /* inplace updates aren't decoded atm, don't log the origin */
6627
6628 recptr = XLogInsert(RM_HEAP_ID, XLOG_HEAP_INPLACE);
6629
6630 PageSetLSN(page, recptr);
6631 }
6632
6633 memcpy(dst, src, newlen);
6634
6635 MarkBufferDirty(buffer);
6636
6638
6639 /*
6640 * Send invalidations to shared queue. SearchSysCacheLocked1() assumes we
6641 * do this before UnlockTuple().
6642 *
6643 * If we're mutating a tuple visible only to this transaction, there's an
6644 * equivalent transactional inval from the action that created the tuple,
6645 * and this inval is superfluous.
6646 */
6648
6649 MyProc->delayChkptFlags &= ~DELAY_CHKPT_START;
6651 UnlockTuple(relation, &tuple->t_self, InplaceUpdateTupleLock);
6652
6653 AcceptInvalidationMessages(); /* local processing of just-sent inval */
6654
6655 /*
6656 * Queue a transactional inval. The immediate invalidation we just sent
6657 * is the only one known to be necessary. To reduce risk from the
6658 * transition to immediate invalidation, continue sending a transactional
6659 * invalidation like we've long done. Third-party code might rely on it.
6660 */
6662 CacheInvalidateHeapTuple(relation, tuple, NULL);
6663}
6664
6665/*
6666 * heap_inplace_unlock - reverse of heap_inplace_lock
6667 */
6668void
6670 HeapTuple oldtup, Buffer buffer)
6671{
6673 UnlockTuple(relation, &oldtup->t_self, InplaceUpdateTupleLock);
6675}
6676
6677#define FRM_NOOP 0x0001
6678#define FRM_INVALIDATE_XMAX 0x0002
6679#define FRM_RETURN_IS_XID 0x0004
6680#define FRM_RETURN_IS_MULTI 0x0008
6681#define FRM_MARK_COMMITTED 0x0010
6682
6683/*
6684 * FreezeMultiXactId
6685 * Determine what to do during freezing when a tuple is marked by a
6686 * MultiXactId.
6687 *
6688 * "flags" is an output value; it's used to tell caller what to do on return.
6689 * "pagefrz" is an input/output value, used to manage page level freezing.
6690 *
6691 * Possible values that we can set in "flags":
6692 * FRM_NOOP
6693 * don't do anything -- keep existing Xmax
6694 * FRM_INVALIDATE_XMAX
6695 * mark Xmax as InvalidTransactionId and set XMAX_INVALID flag.
6696 * FRM_RETURN_IS_XID
6697 * The Xid return value is a single update Xid to set as xmax.
6698 * FRM_MARK_COMMITTED
6699 * Xmax can be marked as HEAP_XMAX_COMMITTED
6700 * FRM_RETURN_IS_MULTI
6701 * The return value is a new MultiXactId to set as new Xmax.
6702 * (caller must obtain proper infomask bits using GetMultiXactIdHintBits)
6703 *
6704 * Caller delegates control of page freezing to us. In practice we always
6705 * force freezing of caller's page unless FRM_NOOP processing is indicated.
6706 * We help caller ensure that XIDs < FreezeLimit and MXIDs < MultiXactCutoff
6707 * can never be left behind. We freely choose when and how to process each
6708 * Multi, without ever violating the cutoff postconditions for freezing.
6709 *
6710 * It's useful to remove Multis on a proactive timeline (relative to freezing
6711 * XIDs) to keep MultiXact member SLRU buffer misses to a minimum. It can also
6712 * be cheaper in the short run, for us, since we too can avoid SLRU buffer
6713 * misses through eager processing.
6714 *
6715 * NB: Creates a _new_ MultiXactId when FRM_RETURN_IS_MULTI is set, though only
6716 * when FreezeLimit and/or MultiXactCutoff cutoffs leave us with no choice.
6717 * This can usually be put off, which is usually enough to avoid it altogether.
6718 * Allocating new multis during VACUUM should be avoided on general principle;
6719 * only VACUUM can advance relminmxid, so allocating new Multis here comes with
6720 * its own special risks.
6721 *
6722 * NB: Caller must maintain "no freeze" NewRelfrozenXid/NewRelminMxid trackers
6723 * using heap_tuple_should_freeze when we haven't forced page-level freezing.
6724 *
6725 * NB: Caller should avoid needlessly calling heap_tuple_should_freeze when we
6726 * have already forced page-level freezing, since that might incur the same
6727 * SLRU buffer misses that we specifically intended to avoid by freezing.
6728 */
6729static TransactionId
6731 const struct VacuumCutoffs *cutoffs, uint16 *flags,
6732 HeapPageFreeze *pagefrz)
6733{
6734 TransactionId newxmax;
6735 MultiXactMember *members;
6736 int nmembers;
6737 bool need_replace;
6738 int nnewmembers;
6739 MultiXactMember *newmembers;
6740 bool has_lockers;
6741 TransactionId update_xid;
6742 bool update_committed;
6743 TransactionId FreezePageRelfrozenXid;
6744
6745 *flags = 0;
6746
6747 /* We should only be called in Multis */
6748 Assert(t_infomask & HEAP_XMAX_IS_MULTI);
6749
6750 if (!MultiXactIdIsValid(multi) ||
6751 HEAP_LOCKED_UPGRADED(t_infomask))
6752 {
6753 *flags |= FRM_INVALIDATE_XMAX;
6754 pagefrz->freeze_required = true;
6755 return InvalidTransactionId;
6756 }
6757 else if (MultiXactIdPrecedes(multi, cutoffs->relminmxid))
6758 ereport(ERROR,
6760 errmsg_internal("found multixact %u from before relminmxid %u",
6761 multi, cutoffs->relminmxid)));
6762 else if (MultiXactIdPrecedes(multi, cutoffs->OldestMxact))
6763 {
6764 TransactionId update_xact;
6765
6766 /*
6767 * This old multi cannot possibly have members still running, but
6768 * verify just in case. If it was a locker only, it can be removed
6769 * without any further consideration; but if it contained an update,
6770 * we might need to preserve it.
6771 */
6772 if (MultiXactIdIsRunning(multi,
6773 HEAP_XMAX_IS_LOCKED_ONLY(t_infomask)))
6774 ereport(ERROR,
6776 errmsg_internal("multixact %u from before multi freeze cutoff %u found to be still running",
6777 multi, cutoffs->OldestMxact)));
6778
6779 if (HEAP_XMAX_IS_LOCKED_ONLY(t_infomask))
6780 {
6781 *flags |= FRM_INVALIDATE_XMAX;
6782 pagefrz->freeze_required = true;
6783 return InvalidTransactionId;
6784 }
6785
6786 /* replace multi with single XID for its updater? */
6787 update_xact = MultiXactIdGetUpdateXid(multi, t_infomask);
6788 if (TransactionIdPrecedes(update_xact, cutoffs->relfrozenxid))
6789 ereport(ERROR,
6791 errmsg_internal("multixact %u contains update XID %u from before relfrozenxid %u",
6792 multi, update_xact,
6793 cutoffs->relfrozenxid)));
6794 else if (TransactionIdPrecedes(update_xact, cutoffs->OldestXmin))
6795 {
6796 /*
6797 * Updater XID has to have aborted (otherwise the tuple would have
6798 * been pruned away instead, since updater XID is < OldestXmin).
6799 * Just remove xmax.
6800 */
6801 if (TransactionIdDidCommit(update_xact))
6802 ereport(ERROR,
6804 errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
6805 multi, update_xact,
6806 cutoffs->OldestXmin)));
6807 *flags |= FRM_INVALIDATE_XMAX;
6808 pagefrz->freeze_required = true;
6809 return InvalidTransactionId;
6810 }
6811
6812 /* Have to keep updater XID as new xmax */
6813 *flags |= FRM_RETURN_IS_XID;
6814 pagefrz->freeze_required = true;
6815 return update_xact;
6816 }
6817
6818 /*
6819 * Some member(s) of this Multi may be below FreezeLimit xid cutoff, so we
6820 * need to walk the whole members array to figure out what to do, if
6821 * anything.
6822 */
6823 nmembers =
6824 GetMultiXactIdMembers(multi, &members, false,
6825 HEAP_XMAX_IS_LOCKED_ONLY(t_infomask));
6826 if (nmembers <= 0)
6827 {
6828 /* Nothing worth keeping */
6829 *flags |= FRM_INVALIDATE_XMAX;
6830 pagefrz->freeze_required = true;
6831 return InvalidTransactionId;
6832 }
6833
6834 /*
6835 * The FRM_NOOP case is the only case where we might need to ratchet back
6836 * FreezePageRelfrozenXid or FreezePageRelminMxid. It is also the only
6837 * case where our caller might ratchet back its NoFreezePageRelfrozenXid
6838 * or NoFreezePageRelminMxid "no freeze" trackers to deal with a multi.
6839 * FRM_NOOP handling should result in the NewRelfrozenXid/NewRelminMxid
6840 * trackers managed by VACUUM being ratcheting back by xmax to the degree
6841 * required to make it safe to leave xmax undisturbed, independent of
6842 * whether or not page freezing is triggered somewhere else.
6843 *
6844 * Our policy is to force freezing in every case other than FRM_NOOP,
6845 * which obviates the need to maintain either set of trackers, anywhere.
6846 * Every other case will reliably execute a freeze plan for xmax that
6847 * either replaces xmax with an XID/MXID >= OldestXmin/OldestMxact, or
6848 * sets xmax to an InvalidTransactionId XID, rendering xmax fully frozen.
6849 * (VACUUM's NewRelfrozenXid/NewRelminMxid trackers are initialized with
6850 * OldestXmin/OldestMxact, so later values never need to be tracked here.)
6851 */
6852 need_replace = false;
6853 FreezePageRelfrozenXid = pagefrz->FreezePageRelfrozenXid;
6854 for (int i = 0; i < nmembers; i++)
6855 {
6856 TransactionId xid = members[i].xid;
6857
6858 Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
6859
6860 if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
6861 {
6862 /* Can't violate the FreezeLimit postcondition */
6863 need_replace = true;
6864 break;
6865 }
6866 if (TransactionIdPrecedes(xid, FreezePageRelfrozenXid))
6867 FreezePageRelfrozenXid = xid;
6868 }
6869
6870 /* Can't violate the MultiXactCutoff postcondition, either */
6871 if (!need_replace)
6872 need_replace = MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff);
6873
6874 if (!need_replace)
6875 {
6876 /*
6877 * vacuumlazy.c might ratchet back NewRelminMxid, NewRelfrozenXid, or
6878 * both together to make it safe to retain this particular multi after
6879 * freezing its page
6880 */
6881 *flags |= FRM_NOOP;
6882 pagefrz->FreezePageRelfrozenXid = FreezePageRelfrozenXid;
6883 if (MultiXactIdPrecedes(multi, pagefrz->FreezePageRelminMxid))
6884 pagefrz->FreezePageRelminMxid = multi;
6885 pfree(members);
6886 return multi;
6887 }
6888
6889 /*
6890 * Do a more thorough second pass over the multi to figure out which
6891 * member XIDs actually need to be kept. Checking the precise status of
6892 * individual members might even show that we don't need to keep anything.
6893 * That is quite possible even though the Multi must be >= OldestMxact,
6894 * since our second pass only keeps member XIDs when it's truly necessary;
6895 * even member XIDs >= OldestXmin often won't be kept by second pass.
6896 */
6897 nnewmembers = 0;
6898 newmembers = palloc(sizeof(MultiXactMember) * nmembers);
6899 has_lockers = false;
6900 update_xid = InvalidTransactionId;
6901 update_committed = false;
6902
6903 /*
6904 * Determine whether to keep each member xid, or to ignore it instead
6905 */
6906 for (int i = 0; i < nmembers; i++)
6907 {
6908 TransactionId xid = members[i].xid;
6909 MultiXactStatus mstatus = members[i].status;
6910
6911 Assert(!TransactionIdPrecedes(xid, cutoffs->relfrozenxid));
6912
6913 if (!ISUPDATE_from_mxstatus(mstatus))
6914 {
6915 /*
6916 * Locker XID (not updater XID). We only keep lockers that are
6917 * still running.
6918 */
6921 {
6922 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
6923 ereport(ERROR,
6925 errmsg_internal("multixact %u contains running locker XID %u from before removable cutoff %u",
6926 multi, xid,
6927 cutoffs->OldestXmin)));
6928 newmembers[nnewmembers++] = members[i];
6929 has_lockers = true;
6930 }
6931
6932 continue;
6933 }
6934
6935 /*
6936 * Updater XID (not locker XID). Should we keep it?
6937 *
6938 * Since the tuple wasn't totally removed when vacuum pruned, the
6939 * update Xid cannot possibly be older than OldestXmin cutoff unless
6940 * the updater XID aborted. If the updater transaction is known
6941 * aborted or crashed then it's okay to ignore it, otherwise not.
6942 *
6943 * In any case the Multi should never contain two updaters, whatever
6944 * their individual commit status. Check for that first, in passing.
6945 */
6946 if (TransactionIdIsValid(update_xid))
6947 ereport(ERROR,
6949 errmsg_internal("multixact %u has two or more updating members",
6950 multi),
6951 errdetail_internal("First updater XID=%u second updater XID=%u.",
6952 update_xid, xid)));
6953
6954 /*
6955 * As with all tuple visibility routines, it's critical to test
6956 * TransactionIdIsInProgress before TransactionIdDidCommit, because of
6957 * race conditions explained in detail in heapam_visibility.c.
6958 */
6961 update_xid = xid;
6962 else if (TransactionIdDidCommit(xid))
6963 {
6964 /*
6965 * The transaction committed, so we can tell caller to set
6966 * HEAP_XMAX_COMMITTED. (We can only do this because we know the
6967 * transaction is not running.)
6968 */
6969 update_committed = true;
6970 update_xid = xid;
6971 }
6972 else
6973 {
6974 /*
6975 * Not in progress, not committed -- must be aborted or crashed;
6976 * we can ignore it.
6977 */
6978 continue;
6979 }
6980
6981 /*
6982 * We determined that updater must be kept -- add it to pending new
6983 * members list
6984 */
6985 if (TransactionIdPrecedes(xid, cutoffs->OldestXmin))
6986 ereport(ERROR,
6988 errmsg_internal("multixact %u contains committed update XID %u from before removable cutoff %u",
6989 multi, xid, cutoffs->OldestXmin)));
6990 newmembers[nnewmembers++] = members[i];
6991 }
6992
6993 pfree(members);
6994
6995 /*
6996 * Determine what to do with caller's multi based on information gathered
6997 * during our second pass
6998 */
6999 if (nnewmembers == 0)
7000 {
7001 /* Nothing worth keeping */
7002 *flags |= FRM_INVALIDATE_XMAX;
7003 newxmax = InvalidTransactionId;
7004 }
7005 else if (TransactionIdIsValid(update_xid) && !has_lockers)
7006 {
7007 /*
7008 * If there's a single member and it's an update, pass it back alone
7009 * without creating a new Multi. (XXX we could do this when there's a
7010 * single remaining locker, too, but that would complicate the API too
7011 * much; moreover, the case with the single updater is more
7012 * interesting, because those are longer-lived.)
7013 */
7014 Assert(nnewmembers == 1);
7015 *flags |= FRM_RETURN_IS_XID;
7016 if (update_committed)
7017 *flags |= FRM_MARK_COMMITTED;
7018 newxmax = update_xid;
7019 }
7020 else
7021 {
7022 /*
7023 * Create a new multixact with the surviving members of the previous
7024 * one, to set as new Xmax in the tuple
7025 */
7026 newxmax = MultiXactIdCreateFromMembers(nnewmembers, newmembers);
7027 *flags |= FRM_RETURN_IS_MULTI;
7028 }
7029
7030 pfree(newmembers);
7031
7032 pagefrz->freeze_required = true;
7033 return newxmax;
7034}
7035
7036/*
7037 * heap_prepare_freeze_tuple
7038 *
7039 * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
7040 * are older than the OldestXmin and/or OldestMxact freeze cutoffs. If so,
7041 * setup enough state (in the *frz output argument) to enable caller to
7042 * process this tuple as part of freezing its page, and return true. Return
7043 * false if nothing can be changed about the tuple right now.
7044 *
7045 * Also sets *totally_frozen to true if the tuple will be totally frozen once
7046 * caller executes returned freeze plan (or if the tuple was already totally
7047 * frozen by an earlier VACUUM). This indicates that there are no remaining
7048 * XIDs or MultiXactIds that will need to be processed by a future VACUUM.
7049 *
7050 * VACUUM caller must assemble HeapTupleFreeze freeze plan entries for every
7051 * tuple that we returned true for, and then execute freezing. Caller must
7052 * initialize pagefrz fields for page as a whole before first call here for
7053 * each heap page.
7054 *
7055 * VACUUM caller decides on whether or not to freeze the page as a whole.
7056 * We'll often prepare freeze plans for a page that caller just discards.
7057 * However, VACUUM doesn't always get to make a choice; it must freeze when
7058 * pagefrz.freeze_required is set, to ensure that any XIDs < FreezeLimit (and
7059 * MXIDs < MultiXactCutoff) can never be left behind. We help to make sure
7060 * that VACUUM always follows that rule.
7061 *
7062 * We sometimes force freezing of xmax MultiXactId values long before it is
7063 * strictly necessary to do so just to ensure the FreezeLimit postcondition.
7064 * It's worth processing MultiXactIds proactively when it is cheap to do so,
7065 * and it's convenient to make that happen by piggy-backing it on the "force
7066 * freezing" mechanism. Conversely, we sometimes delay freezing MultiXactIds
7067 * because it is expensive right now (though only when it's still possible to
7068 * do so without violating the FreezeLimit/MultiXactCutoff postcondition).
7069 *
7070 * It is assumed that the caller has checked the tuple with
7071 * HeapTupleSatisfiesVacuum() and determined that it is not HEAPTUPLE_DEAD
7072 * (else we should be removing the tuple, not freezing it).
7073 *
7074 * NB: This function has side effects: it might allocate a new MultiXactId.
7075 * It will be set as tuple's new xmax when our *frz output is processed within
7076 * heap_execute_freeze_tuple later on. If the tuple is in a shared buffer
7077 * then caller had better have an exclusive lock on it already.
7078 */
7079bool
7081 const struct VacuumCutoffs *cutoffs,
7082 HeapPageFreeze *pagefrz,
7083 HeapTupleFreeze *frz, bool *totally_frozen)
7084{
7085 bool xmin_already_frozen = false,
7086 xmax_already_frozen = false;
7087 bool freeze_xmin = false,
7088 replace_xvac = false,
7089 replace_xmax = false,
7090 freeze_xmax = false;
7091 TransactionId xid;
7092
7093 frz->xmax = HeapTupleHeaderGetRawXmax(tuple);
7094 frz->t_infomask2 = tuple->t_infomask2;
7095 frz->t_infomask = tuple->t_infomask;
7096 frz->frzflags = 0;
7097 frz->checkflags = 0;
7098
7099 /*
7100 * Process xmin, while keeping track of whether it's already frozen, or
7101 * will become frozen iff our freeze plan is executed by caller (could be
7102 * neither).
7103 */
7104 xid = HeapTupleHeaderGetXmin(tuple);
7105 if (!TransactionIdIsNormal(xid))
7106 xmin_already_frozen = true;
7107 else
7108 {
7109 if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
7110 ereport(ERROR,
7112 errmsg_internal("found xmin %u from before relfrozenxid %u",
7113 xid, cutoffs->relfrozenxid)));
7114
7115 /* Will set freeze_xmin flags in freeze plan below */
7116 freeze_xmin = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
7117
7118 /* Verify that xmin committed if and when freeze plan is executed */
7119 if (freeze_xmin)
7121 }
7122
7123 /*
7124 * Old-style VACUUM FULL is gone, but we have to process xvac for as long
7125 * as we support having MOVED_OFF/MOVED_IN tuples in the database
7126 */
7127 xid = HeapTupleHeaderGetXvac(tuple);
7128 if (TransactionIdIsNormal(xid))
7129 {
7131 Assert(TransactionIdPrecedes(xid, cutoffs->OldestXmin));
7132
7133 /*
7134 * For Xvac, we always freeze proactively. This allows totally_frozen
7135 * tracking to ignore xvac.
7136 */
7137 replace_xvac = pagefrz->freeze_required = true;
7138
7139 /* Will set replace_xvac flags in freeze plan below */
7140 }
7141
7142 /* Now process xmax */
7143 xid = frz->xmax;
7144 if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
7145 {
7146 /* Raw xmax is a MultiXactId */
7147 TransactionId newxmax;
7148 uint16 flags;
7149
7150 /*
7151 * We will either remove xmax completely (in the "freeze_xmax" path),
7152 * process xmax by replacing it (in the "replace_xmax" path), or
7153 * perform no-op xmax processing. The only constraint is that the
7154 * FreezeLimit/MultiXactCutoff postcondition must never be violated.
7155 */
7156 newxmax = FreezeMultiXactId(xid, tuple->t_infomask, cutoffs,
7157 &flags, pagefrz);
7158
7159 if (flags & FRM_NOOP)
7160 {
7161 /*
7162 * xmax is a MultiXactId, and nothing about it changes for now.
7163 * This is the only case where 'freeze_required' won't have been
7164 * set for us by FreezeMultiXactId, as well as the only case where
7165 * neither freeze_xmax nor replace_xmax are set (given a multi).
7166 *
7167 * This is a no-op, but the call to FreezeMultiXactId might have
7168 * ratcheted back NewRelfrozenXid and/or NewRelminMxid trackers
7169 * for us (the "freeze page" variants, specifically). That'll
7170 * make it safe for our caller to freeze the page later on, while
7171 * leaving this particular xmax undisturbed.
7172 *
7173 * FreezeMultiXactId is _not_ responsible for the "no freeze"
7174 * NewRelfrozenXid/NewRelminMxid trackers, though -- that's our
7175 * job. A call to heap_tuple_should_freeze for this same tuple
7176 * will take place below if 'freeze_required' isn't set already.
7177 * (This repeats work from FreezeMultiXactId, but allows "no
7178 * freeze" tracker maintenance to happen in only one place.)
7179 */
7180 Assert(!MultiXactIdPrecedes(newxmax, cutoffs->MultiXactCutoff));
7181 Assert(MultiXactIdIsValid(newxmax) && xid == newxmax);
7182 }
7183 else if (flags & FRM_RETURN_IS_XID)
7184 {
7185 /*
7186 * xmax will become an updater Xid (original MultiXact's updater
7187 * member Xid will be carried forward as a simple Xid in Xmax).
7188 */
7189 Assert(!TransactionIdPrecedes(newxmax, cutoffs->OldestXmin));
7190
7191 /*
7192 * NB -- some of these transformations are only valid because we
7193 * know the return Xid is a tuple updater (i.e. not merely a
7194 * locker.) Also note that the only reason we don't explicitly
7195 * worry about HEAP_KEYS_UPDATED is because it lives in
7196 * t_infomask2 rather than t_infomask.
7197 */
7198 frz->t_infomask &= ~HEAP_XMAX_BITS;
7199 frz->xmax = newxmax;
7200 if (flags & FRM_MARK_COMMITTED)
7202 replace_xmax = true;
7203 }
7204 else if (flags & FRM_RETURN_IS_MULTI)
7205 {
7206 uint16 newbits;
7207 uint16 newbits2;
7208
7209 /*
7210 * xmax is an old MultiXactId that we have to replace with a new
7211 * MultiXactId, to carry forward two or more original member XIDs.
7212 */
7213 Assert(!MultiXactIdPrecedes(newxmax, cutoffs->OldestMxact));
7214
7215 /*
7216 * We can't use GetMultiXactIdHintBits directly on the new multi
7217 * here; that routine initializes the masks to all zeroes, which
7218 * would lose other bits we need. Doing it this way ensures all
7219 * unrelated bits remain untouched.
7220 */
7221 frz->t_infomask &= ~HEAP_XMAX_BITS;
7222 frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
7223 GetMultiXactIdHintBits(newxmax, &newbits, &newbits2);
7224 frz->t_infomask |= newbits;
7225 frz->t_infomask2 |= newbits2;
7226 frz->xmax = newxmax;
7227 replace_xmax = true;
7228 }
7229 else
7230 {
7231 /*
7232 * Freeze plan for tuple "freezes xmax" in the strictest sense:
7233 * it'll leave nothing in xmax (neither an Xid nor a MultiXactId).
7234 */
7235 Assert(flags & FRM_INVALIDATE_XMAX);
7236 Assert(!TransactionIdIsValid(newxmax));
7237
7238 /* Will set freeze_xmax flags in freeze plan below */
7239 freeze_xmax = true;
7240 }
7241
7242 /* MultiXactId processing forces freezing (barring FRM_NOOP case) */
7243 Assert(pagefrz->freeze_required || (!freeze_xmax && !replace_xmax));
7244 }
7245 else if (TransactionIdIsNormal(xid))
7246 {
7247 /* Raw xmax is normal XID */
7248 if (TransactionIdPrecedes(xid, cutoffs->relfrozenxid))
7249 ereport(ERROR,
7251 errmsg_internal("found xmax %u from before relfrozenxid %u",
7252 xid, cutoffs->relfrozenxid)));
7253
7254 /* Will set freeze_xmax flags in freeze plan below */
7255 freeze_xmax = TransactionIdPrecedes(xid, cutoffs->OldestXmin);
7256
7257 /*
7258 * Verify that xmax aborted if and when freeze plan is executed,
7259 * provided it's from an update. (A lock-only xmax can be removed
7260 * independent of this, since the lock is released at xact end.)
7261 */
7262 if (freeze_xmax && !HEAP_XMAX_IS_LOCKED_ONLY(tuple->t_infomask))
7264 }
7265 else if (!TransactionIdIsValid(xid))
7266 {
7267 /* Raw xmax is InvalidTransactionId XID */
7268 Assert((tuple->t_infomask & HEAP_XMAX_IS_MULTI) == 0);
7269 xmax_already_frozen = true;
7270 }
7271 else
7272 ereport(ERROR,
7274 errmsg_internal("found raw xmax %u (infomask 0x%04x) not invalid and not multi",
7275 xid, tuple->t_infomask)));
7276
7277 if (freeze_xmin)
7278 {
7279 Assert(!xmin_already_frozen);
7280
7282 }
7283 if (replace_xvac)
7284 {
7285 /*
7286 * If a MOVED_OFF tuple is not dead, the xvac transaction must have
7287 * failed; whereas a non-dead MOVED_IN tuple must mean the xvac
7288 * transaction succeeded.
7289 */
7290 Assert(pagefrz->freeze_required);
7291 if (tuple->t_infomask & HEAP_MOVED_OFF)
7292 frz->frzflags |= XLH_INVALID_XVAC;
7293 else
7294 frz->frzflags |= XLH_FREEZE_XVAC;
7295 }
7296 if (replace_xmax)
7297 {
7298 Assert(!xmax_already_frozen && !freeze_xmax);
7299 Assert(pagefrz->freeze_required);
7300
7301 /* Already set replace_xmax flags in freeze plan earlier */
7302 }
7303 if (freeze_xmax)
7304 {
7305 Assert(!xmax_already_frozen && !replace_xmax);
7306
7308
7309 /*
7310 * The tuple might be marked either XMAX_INVALID or XMAX_COMMITTED +
7311 * LOCKED. Normalize to INVALID just to be sure no one gets confused.
7312 * Also get rid of the HEAP_KEYS_UPDATED bit.
7313 */
7314 frz->t_infomask &= ~HEAP_XMAX_BITS;
7316 frz->t_infomask2 &= ~HEAP_HOT_UPDATED;
7317 frz->t_infomask2 &= ~HEAP_KEYS_UPDATED;
7318 }
7319
7320 /*
7321 * Determine if this tuple is already totally frozen, or will become
7322 * totally frozen (provided caller executes freeze plans for the page)
7323 */
7324 *totally_frozen = ((freeze_xmin || xmin_already_frozen) &&
7325 (freeze_xmax || xmax_already_frozen));
7326
7327 if (!pagefrz->freeze_required && !(xmin_already_frozen &&
7328 xmax_already_frozen))
7329 {
7330 /*
7331 * So far no previous tuple from the page made freezing mandatory.
7332 * Does this tuple force caller to freeze the entire page?
7333 */
7334 pagefrz->freeze_required =
7335 heap_tuple_should_freeze(tuple, cutoffs,
7336 &pagefrz->NoFreezePageRelfrozenXid,
7337 &pagefrz->NoFreezePageRelminMxid);
7338 }
7339
7340 /* Tell caller if this tuple has a usable freeze plan set in *frz */
7341 return freeze_xmin || replace_xvac || replace_xmax || freeze_xmax;
7342}
7343
7344/*
7345 * Perform xmin/xmax XID status sanity checks before actually executing freeze
7346 * plans.
7347 *
7348 * heap_prepare_freeze_tuple doesn't perform these checks directly because
7349 * pg_xact lookups are relatively expensive. They shouldn't be repeated by
7350 * successive VACUUMs that each decide against freezing the same page.
7351 */
7352void
7354 HeapTupleFreeze *tuples, int ntuples)
7355{
7356 Page page = BufferGetPage(buffer);
7357
7358 for (int i = 0; i < ntuples; i++)
7359 {
7360 HeapTupleFreeze *frz = tuples + i;
7361 ItemId itemid = PageGetItemId(page, frz->offset);
7362 HeapTupleHeader htup;
7363
7364 htup = (HeapTupleHeader) PageGetItem(page, itemid);
7365
7366 /* Deliberately avoid relying on tuple hint bits here */
7368 {
7370
7372 if (unlikely(!TransactionIdDidCommit(xmin)))
7373 ereport(ERROR,
7375 errmsg_internal("uncommitted xmin %u needs to be frozen",
7376 xmin)));
7377 }
7378
7379 /*
7380 * TransactionIdDidAbort won't work reliably in the presence of XIDs
7381 * left behind by transactions that were in progress during a crash,
7382 * so we can only check that xmax didn't commit
7383 */
7385 {
7387
7390 ereport(ERROR,
7392 errmsg_internal("cannot freeze committed xmax %u",
7393 xmax)));
7394 }
7395 }
7396}
7397
7398/*
7399 * Helper which executes freezing of one or more heap tuples on a page on
7400 * behalf of caller. Caller passes an array of tuple plans from
7401 * heap_prepare_freeze_tuple. Caller must set 'offset' in each plan for us.
7402 * Must be called in a critical section that also marks the buffer dirty and,
7403 * if needed, emits WAL.
7404 */
7405void
7407{
7408 Page page = BufferGetPage(buffer);
7409
7410 for (int i = 0; i < ntuples; i++)
7411 {
7412 HeapTupleFreeze *frz = tuples + i;
7413 ItemId itemid = PageGetItemId(page, frz->offset);
7414 HeapTupleHeader htup;
7415
7416 htup = (HeapTupleHeader) PageGetItem(page, itemid);
7417 heap_execute_freeze_tuple(htup, frz);
7418 }
7419}
7420
7421/*
7422 * heap_freeze_tuple
7423 * Freeze tuple in place, without WAL logging.
7424 *
7425 * Useful for callers like CLUSTER that perform their own WAL logging.
7426 */
7427bool
7429 TransactionId relfrozenxid, TransactionId relminmxid,
7430 TransactionId FreezeLimit, TransactionId MultiXactCutoff)
7431{
7432 HeapTupleFreeze frz;
7433 bool do_freeze;
7434 bool totally_frozen;
7435 struct VacuumCutoffs cutoffs;
7436 HeapPageFreeze pagefrz;
7437
7438 cutoffs.relfrozenxid = relfrozenxid;
7439 cutoffs.relminmxid = relminmxid;
7440 cutoffs.OldestXmin = FreezeLimit;
7441 cutoffs.OldestMxact = MultiXactCutoff;
7442 cutoffs.FreezeLimit = FreezeLimit;
7444
7445 pagefrz.freeze_required = true;
7446 pagefrz.FreezePageRelfrozenXid = FreezeLimit;
7447 pagefrz.FreezePageRelminMxid = MultiXactCutoff;
7448 pagefrz.NoFreezePageRelfrozenXid = FreezeLimit;
7449 pagefrz.NoFreezePageRelminMxid = MultiXactCutoff;
7450
7451 do_freeze = heap_prepare_freeze_tuple(tuple, &cutoffs,
7452 &pagefrz, &frz, &totally_frozen);
7453
7454 /*
7455 * Note that because this is not a WAL-logged operation, we don't need to
7456 * fill in the offset in the freeze record.
7457 */
7458
7459 if (do_freeze)
7460 heap_execute_freeze_tuple(tuple, &frz);
7461 return do_freeze;
7462}
7463
7464/*
7465 * For a given MultiXactId, return the hint bits that should be set in the
7466 * tuple's infomask.
7467 *
7468 * Normally this should be called for a multixact that was just created, and
7469 * so is on our local cache, so the GetMembers call is fast.
7470 */
7471static void
7473 uint16 *new_infomask2)
7474{
7475 int nmembers;
7476 MultiXactMember *members;
7477 int i;
7479 uint16 bits2 = 0;
7480 bool has_update = false;
7481 LockTupleMode strongest = LockTupleKeyShare;
7482
7483 /*
7484 * We only use this in multis we just created, so they cannot be values
7485 * pre-pg_upgrade.
7486 */
7487 nmembers = GetMultiXactIdMembers(multi, &members, false, false);
7488
7489 for (i = 0; i < nmembers; i++)
7490 {
7492
7493 /*
7494 * Remember the strongest lock mode held by any member of the
7495 * multixact.
7496 */
7497 mode = TUPLOCK_from_mxstatus(members[i].status);
7498 if (mode > strongest)
7499 strongest = mode;
7500
7501 /* See what other bits we need */
7502 switch (members[i].status)
7503 {
7507 break;
7508
7510 bits2 |= HEAP_KEYS_UPDATED;
7511 break;
7512
7514 has_update = true;
7515 break;
7516
7518 bits2 |= HEAP_KEYS_UPDATED;
7519 has_update = true;
7520 break;
7521 }
7522 }
7523
7524 if (strongest == LockTupleExclusive ||
7525 strongest == LockTupleNoKeyExclusive)
7526 bits |= HEAP_XMAX_EXCL_LOCK;
7527 else if (strongest == LockTupleShare)
7528 bits |= HEAP_XMAX_SHR_LOCK;
7529 else if (strongest == LockTupleKeyShare)
7530 bits |= HEAP_XMAX_KEYSHR_LOCK;
7531
7532 if (!has_update)
7533 bits |= HEAP_XMAX_LOCK_ONLY;
7534
7535 if (nmembers > 0)
7536 pfree(members);
7537
7538 *new_infomask = bits;
7539 *new_infomask2 = bits2;
7540}
7541
7542/*
7543 * MultiXactIdGetUpdateXid
7544 *
7545 * Given a multixact Xmax and corresponding infomask, which does not have the
7546 * HEAP_XMAX_LOCK_ONLY bit set, obtain and return the Xid of the updating
7547 * transaction.
7548 *
7549 * Caller is expected to check the status of the updating transaction, if
7550 * necessary.
7551 */
7552static TransactionId
7554{
7555 TransactionId update_xact = InvalidTransactionId;
7556 MultiXactMember *members;
7557 int nmembers;
7558
7559 Assert(!(t_infomask & HEAP_XMAX_LOCK_ONLY));
7560 Assert(t_infomask & HEAP_XMAX_IS_MULTI);
7561
7562 /*
7563 * Since we know the LOCK_ONLY bit is not set, this cannot be a multi from
7564 * pre-pg_upgrade.
7565 */
7566 nmembers = GetMultiXactIdMembers(xmax, &members, false, false);
7567
7568 if (nmembers > 0)
7569 {
7570 int i;
7571
7572 for (i = 0; i < nmembers; i++)
7573 {
7574 /* Ignore lockers */
7575 if (!ISUPDATE_from_mxstatus(members[i].status))
7576 continue;
7577
7578 /* there can be at most one updater */
7579 Assert(update_xact == InvalidTransactionId);
7580 update_xact = members[i].xid;
7581#ifndef USE_ASSERT_CHECKING
7582
7583 /*
7584 * in an assert-enabled build, walk the whole array to ensure
7585 * there's no other updater.
7586 */
7587 break;
7588#endif
7589 }
7590
7591 pfree(members);
7592 }
7593
7594 return update_xact;
7595}
7596
7597/*
7598 * HeapTupleGetUpdateXid
7599 * As above, but use a HeapTupleHeader
7600 *
7601 * See also HeapTupleHeaderGetUpdateXid, which can be used without previously
7602 * checking the hint bits.
7603 */
7606{
7608 tup->t_infomask);
7609}
7610
7611/*
7612 * Does the given multixact conflict with the current transaction grabbing a
7613 * tuple lock of the given strength?
7614 *
7615 * The passed infomask pairs up with the given multixact in the tuple header.
7616 *
7617 * If current_is_member is not NULL, it is set to 'true' if the current
7618 * transaction is a member of the given multixact.
7619 */
7620static bool
7622 LockTupleMode lockmode, bool *current_is_member)
7623{
7624 int nmembers;
7625 MultiXactMember *members;
7626 bool result = false;
7627 LOCKMODE wanted = tupleLockExtraInfo[lockmode].hwlock;
7628
7629 if (HEAP_LOCKED_UPGRADED(infomask))
7630 return false;
7631
7632 nmembers = GetMultiXactIdMembers(multi, &members, false,
7633 HEAP_XMAX_IS_LOCKED_ONLY(infomask));
7634 if (nmembers >= 0)
7635 {
7636 int i;
7637
7638 for (i = 0; i < nmembers; i++)
7639 {
7640 TransactionId memxid;
7641 LOCKMODE memlockmode;
7642
7643 if (result && (current_is_member == NULL || *current_is_member))
7644 break;
7645
7646 memlockmode = LOCKMODE_from_mxstatus(members[i].status);
7647
7648 /* ignore members from current xact (but track their presence) */
7649 memxid = members[i].xid;
7651 {
7652 if (current_is_member != NULL)
7653 *current_is_member = true;
7654 continue;
7655 }
7656 else if (result)
7657 continue;
7658
7659 /* ignore members that don't conflict with the lock we want */
7660 if (!DoLockModesConflict(memlockmode, wanted))
7661 continue;
7662
7663 if (ISUPDATE_from_mxstatus(members[i].status))
7664 {
7665 /* ignore aborted updaters */
7666 if (TransactionIdDidAbort(memxid))
7667 continue;
7668 }
7669 else
7670 {
7671 /* ignore lockers-only that are no longer in progress */
7672 if (!TransactionIdIsInProgress(memxid))
7673 continue;
7674 }
7675
7676 /*
7677 * Whatever remains are either live lockers that conflict with our
7678 * wanted lock, and updaters that are not aborted. Those conflict
7679 * with what we want. Set up to return true, but keep going to
7680 * look for the current transaction among the multixact members,
7681 * if needed.
7682 */
7683 result = true;
7684 }
7685 pfree(members);
7686 }
7687
7688 return result;
7689}
7690
7691/*
7692 * Do_MultiXactIdWait
7693 * Actual implementation for the two functions below.
7694 *
7695 * 'multi', 'status' and 'infomask' indicate what to sleep on (the status is
7696 * needed to ensure we only sleep on conflicting members, and the infomask is
7697 * used to optimize multixact access in case it's a lock-only multi); 'nowait'
7698 * indicates whether to use conditional lock acquisition, to allow callers to
7699 * fail if lock is unavailable. 'rel', 'ctid' and 'oper' are used to set up
7700 * context information for error messages. 'remaining', if not NULL, receives
7701 * the number of members that are still running, including any (non-aborted)
7702 * subtransactions of our own transaction. 'logLockFailure' indicates whether
7703 * to log details when a lock acquisition fails with 'nowait' enabled.
7704 *
7705 * We do this by sleeping on each member using XactLockTableWait. Any
7706 * members that belong to the current backend are *not* waited for, however;
7707 * this would not merely be useless but would lead to Assert failure inside
7708 * XactLockTableWait. By the time this returns, it is certain that all
7709 * transactions *of other backends* that were members of the MultiXactId
7710 * that conflict with the requested status are dead (and no new ones can have
7711 * been added, since it is not legal to add members to an existing
7712 * MultiXactId).
7713 *
7714 * But by the time we finish sleeping, someone else may have changed the Xmax
7715 * of the containing tuple, so the caller needs to iterate on us somehow.
7716 *
7717 * Note that in case we return false, the number of remaining members is
7718 * not to be trusted.
7719 */
7720static bool
7722 uint16 infomask, bool nowait,
7723 Relation rel, const ItemPointerData *ctid, XLTW_Oper oper,
7724 int *remaining, bool logLockFailure)
7725{
7726 bool result = true;
7727 MultiXactMember *members;
7728 int nmembers;
7729 int remain = 0;
7730
7731 /* for pre-pg_upgrade tuples, no need to sleep at all */
7732 nmembers = HEAP_LOCKED_UPGRADED(infomask) ? -1 :
7733 GetMultiXactIdMembers(multi, &members, false,
7734 HEAP_XMAX_IS_LOCKED_ONLY(infomask));
7735
7736 if (nmembers >= 0)
7737 {
7738 int i;
7739
7740 for (i = 0; i < nmembers; i++)
7741 {
7742 TransactionId memxid = members[i].xid;
7743 MultiXactStatus memstatus = members[i].status;
7744
7746 {
7747 remain++;
7748 continue;
7749 }
7750
7752 LOCKMODE_from_mxstatus(status)))
7753 {
7754 if (remaining && TransactionIdIsInProgress(memxid))
7755 remain++;
7756 continue;
7757 }
7758
7759 /*
7760 * This member conflicts with our multi, so we have to sleep (or
7761 * return failure, if asked to avoid waiting.)
7762 *
7763 * Note that we don't set up an error context callback ourselves,
7764 * but instead we pass the info down to XactLockTableWait. This
7765 * might seem a bit wasteful because the context is set up and
7766 * tore down for each member of the multixact, but in reality it
7767 * should be barely noticeable, and it avoids duplicate code.
7768 */
7769 if (nowait)
7770 {
7771 result = ConditionalXactLockTableWait(memxid, logLockFailure);
7772 if (!result)
7773 break;
7774 }
7775 else
7776 XactLockTableWait(memxid, rel, ctid, oper);
7777 }
7778
7779 pfree(members);
7780 }
7781
7782 if (remaining)
7783 *remaining = remain;
7784
7785 return result;
7786}
7787
7788/*
7789 * MultiXactIdWait
7790 * Sleep on a MultiXactId.
7791 *
7792 * By the time we finish sleeping, someone else may have changed the Xmax
7793 * of the containing tuple, so the caller needs to iterate on us somehow.
7794 *
7795 * We return (in *remaining, if not NULL) the number of members that are still
7796 * running, including any (non-aborted) subtransactions of our own transaction.
7797 */
7798static void
7800 Relation rel, const ItemPointerData *ctid, XLTW_Oper oper,
7801 int *remaining)
7802{
7803 (void) Do_MultiXactIdWait(multi, status, infomask, false,
7804 rel, ctid, oper, remaining, false);
7805}
7806
7807/*
7808 * ConditionalMultiXactIdWait
7809 * As above, but only lock if we can get the lock without blocking.
7810 *
7811 * By the time we finish sleeping, someone else may have changed the Xmax
7812 * of the containing tuple, so the caller needs to iterate on us somehow.
7813 *
7814 * If the multixact is now all gone, return true. Returns false if some
7815 * transactions might still be running.
7816 *
7817 * We return (in *remaining, if not NULL) the number of members that are still
7818 * running, including any (non-aborted) subtransactions of our own transaction.
7819 */
7820static bool
7822 uint16 infomask, Relation rel, int *remaining,
7823 bool logLockFailure)
7824{
7825 return Do_MultiXactIdWait(multi, status, infomask, true,
7826 rel, NULL, XLTW_None, remaining, logLockFailure);
7827}
7828
7829/*
7830 * heap_tuple_needs_eventual_freeze
7831 *
7832 * Check to see whether any of the XID fields of a tuple (xmin, xmax, xvac)
7833 * will eventually require freezing (if tuple isn't removed by pruning first).
7834 */
7835bool
7837{
7838 TransactionId xid;
7839
7840 /*
7841 * If xmin is a normal transaction ID, this tuple is definitely not
7842 * frozen.
7843 */
7844 xid = HeapTupleHeaderGetXmin(tuple);
7845 if (TransactionIdIsNormal(xid))
7846 return true;
7847
7848 /*
7849 * If xmax is a valid xact or multixact, this tuple is also not frozen.
7850 */
7851 if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
7852 {
7853 MultiXactId multi;
7854
7855 multi = HeapTupleHeaderGetRawXmax(tuple);
7856 if (MultiXactIdIsValid(multi))
7857 return true;
7858 }
7859 else
7860 {
7861 xid = HeapTupleHeaderGetRawXmax(tuple);
7862 if (TransactionIdIsNormal(xid))
7863 return true;
7864 }
7865
7866 if (tuple->t_infomask & HEAP_MOVED)
7867 {
7868 xid = HeapTupleHeaderGetXvac(tuple);
7869 if (TransactionIdIsNormal(xid))
7870 return true;
7871 }
7872
7873 return false;
7874}
7875
7876/*
7877 * heap_tuple_should_freeze
7878 *
7879 * Return value indicates if heap_prepare_freeze_tuple sibling function would
7880 * (or should) force freezing of the heap page that contains caller's tuple.
7881 * Tuple header XIDs/MXIDs < FreezeLimit/MultiXactCutoff trigger freezing.
7882 * This includes (xmin, xmax, xvac) fields, as well as MultiXact member XIDs.
7883 *
7884 * The *NoFreezePageRelfrozenXid and *NoFreezePageRelminMxid input/output
7885 * arguments help VACUUM track the oldest extant XID/MXID remaining in rel.
7886 * Our working assumption is that caller won't decide to freeze this tuple.
7887 * It's up to caller to only ratchet back its own top-level trackers after the
7888 * point that it fully commits to not freezing the tuple/page in question.
7889 */
7890bool
7892 const struct VacuumCutoffs *cutoffs,
7893 TransactionId *NoFreezePageRelfrozenXid,
7894 MultiXactId *NoFreezePageRelminMxid)
7895{
7896 TransactionId xid;
7897 MultiXactId multi;
7898 bool freeze = false;
7899
7900 /* First deal with xmin */
7901 xid = HeapTupleHeaderGetXmin(tuple);
7902 if (TransactionIdIsNormal(xid))
7903 {
7905 if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
7906 *NoFreezePageRelfrozenXid = xid;
7907 if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
7908 freeze = true;
7909 }
7910
7911 /* Now deal with xmax */
7913 multi = InvalidMultiXactId;
7914 if (tuple->t_infomask & HEAP_XMAX_IS_MULTI)
7915 multi = HeapTupleHeaderGetRawXmax(tuple);
7916 else
7917 xid = HeapTupleHeaderGetRawXmax(tuple);
7918
7919 if (TransactionIdIsNormal(xid))
7920 {
7922 /* xmax is a non-permanent XID */
7923 if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
7924 *NoFreezePageRelfrozenXid = xid;
7925 if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
7926 freeze = true;
7927 }
7928 else if (!MultiXactIdIsValid(multi))
7929 {
7930 /* xmax is a permanent XID or invalid MultiXactId/XID */
7931 }
7932 else if (HEAP_LOCKED_UPGRADED(tuple->t_infomask))
7933 {
7934 /* xmax is a pg_upgrade'd MultiXact, which can't have updater XID */
7935 if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
7936 *NoFreezePageRelminMxid = multi;
7937 /* heap_prepare_freeze_tuple always freezes pg_upgrade'd xmax */
7938 freeze = true;
7939 }
7940 else
7941 {
7942 /* xmax is a MultiXactId that may have an updater XID */
7943 MultiXactMember *members;
7944 int nmembers;
7945
7947 if (MultiXactIdPrecedes(multi, *NoFreezePageRelminMxid))
7948 *NoFreezePageRelminMxid = multi;
7949 if (MultiXactIdPrecedes(multi, cutoffs->MultiXactCutoff))
7950 freeze = true;
7951
7952 /* need to check whether any member of the mxact is old */
7953 nmembers = GetMultiXactIdMembers(multi, &members, false,
7955
7956 for (int i = 0; i < nmembers; i++)
7957 {
7958 xid = members[i].xid;
7960 if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
7961 *NoFreezePageRelfrozenXid = xid;
7962 if (TransactionIdPrecedes(xid, cutoffs->FreezeLimit))
7963 freeze = true;
7964 }
7965 if (nmembers > 0)
7966 pfree(members);
7967 }
7968
7969 if (tuple->t_infomask & HEAP_MOVED)
7970 {
7971 xid = HeapTupleHeaderGetXvac(tuple);
7972 if (TransactionIdIsNormal(xid))
7973 {
7975 if (TransactionIdPrecedes(xid, *NoFreezePageRelfrozenXid))
7976 *NoFreezePageRelfrozenXid = xid;
7977 /* heap_prepare_freeze_tuple forces xvac freezing */
7978 freeze = true;
7979 }
7980 }
7981
7982 return freeze;
7983}
7984
7985/*
7986 * Maintain snapshotConflictHorizon for caller by ratcheting forward its value
7987 * using any committed XIDs contained in 'tuple', an obsolescent heap tuple
7988 * that caller is in the process of physically removing, e.g. via HOT pruning
7989 * or index deletion.
7990 *
7991 * Caller must initialize its value to InvalidTransactionId, which is
7992 * generally interpreted as "definitely no need for a recovery conflict".
7993 * Final value must reflect all heap tuples that caller will physically remove
7994 * (or remove TID references to) via its ongoing pruning/deletion operation.
7995 * ResolveRecoveryConflictWithSnapshot() is passed the final value (taken from
7996 * caller's WAL record) by REDO routine when it replays caller's operation.
7997 */
7998void
8000 TransactionId *snapshotConflictHorizon)
8001{
8005
8006 if (tuple->t_infomask & HEAP_MOVED)
8007 {
8008 if (TransactionIdPrecedes(*snapshotConflictHorizon, xvac))
8009 *snapshotConflictHorizon = xvac;
8010 }
8011
8012 /*
8013 * Ignore tuples inserted by an aborted transaction or if the tuple was
8014 * updated/deleted by the inserting transaction.
8015 *
8016 * Look for a committed hint bit, or if no xmin bit is set, check clog.
8017 */
8018 if (HeapTupleHeaderXminCommitted(tuple) ||
8020 {
8021 if (xmax != xmin &&
8022 TransactionIdFollows(xmax, *snapshotConflictHorizon))
8023 *snapshotConflictHorizon = xmax;
8024 }
8025}
8026
8027#ifdef USE_PREFETCH
8028/*
8029 * Helper function for heap_index_delete_tuples. Issues prefetch requests for
8030 * prefetch_count buffers. The prefetch_state keeps track of all the buffers
8031 * we can prefetch, and which have already been prefetched; each call to this
8032 * function picks up where the previous call left off.
8033 *
8034 * Note: we expect the deltids array to be sorted in an order that groups TIDs
8035 * by heap block, with all TIDs for each block appearing together in exactly
8036 * one group.
8037 */
8038static void
8039index_delete_prefetch_buffer(Relation rel,
8040 IndexDeletePrefetchState *prefetch_state,
8041 int prefetch_count)
8042{
8043 BlockNumber cur_hblkno = prefetch_state->cur_hblkno;
8044 int count = 0;
8045 int i;
8046 int ndeltids = prefetch_state->ndeltids;
8047 TM_IndexDelete *deltids = prefetch_state->deltids;
8048
8049 for (i = prefetch_state->next_item;
8050 i < ndeltids && count < prefetch_count;
8051 i++)
8052 {
8053 ItemPointer htid = &deltids[i].tid;
8054
8055 if (cur_hblkno == InvalidBlockNumber ||
8056 ItemPointerGetBlockNumber(htid) != cur_hblkno)
8057 {
8058 cur_hblkno = ItemPointerGetBlockNumber(htid);
8059 PrefetchBuffer(rel, MAIN_FORKNUM, cur_hblkno);
8060 count++;
8061 }
8062 }
8063
8064 /*
8065 * Save the prefetch position so that next time we can continue from that
8066 * position.
8067 */
8068 prefetch_state->next_item = i;
8069 prefetch_state->cur_hblkno = cur_hblkno;
8070}
8071#endif
8072
8073/*
8074 * Helper function for heap_index_delete_tuples. Checks for index corruption
8075 * involving an invalid TID in index AM caller's index page.
8076 *
8077 * This is an ideal place for these checks. The index AM must hold a buffer
8078 * lock on the index page containing the TIDs we examine here, so we don't
8079 * have to worry about concurrent VACUUMs at all. We can be sure that the
8080 * index is corrupt when htid points directly to an LP_UNUSED item or
8081 * heap-only tuple, which is not the case during standard index scans.
8082 */
8083static inline void
8085 Page page, OffsetNumber maxoff,
8086 const ItemPointerData *htid, TM_IndexStatus *istatus)
8087{
8088 OffsetNumber indexpagehoffnum = ItemPointerGetOffsetNumber(htid);
8089 ItemId iid;
8090
8092
8093 if (unlikely(indexpagehoffnum > maxoff))
8094 ereport(ERROR,
8095 (errcode(ERRCODE_INDEX_CORRUPTED),
8096 errmsg_internal("heap tid from index tuple (%u,%u) points past end of heap page line pointer array at offset %u of block %u in index \"%s\"",
8098 indexpagehoffnum,
8099 istatus->idxoffnum, delstate->iblknum,
8100 RelationGetRelationName(delstate->irel))));
8101
8102 iid = PageGetItemId(page, indexpagehoffnum);
8103 if (unlikely(!ItemIdIsUsed(iid)))
8104 ereport(ERROR,
8105 (errcode(ERRCODE_INDEX_CORRUPTED),
8106 errmsg_internal("heap tid from index tuple (%u,%u) points to unused heap page item at offset %u of block %u in index \"%s\"",
8108 indexpagehoffnum,
8109 istatus->idxoffnum, delstate->iblknum,
8110 RelationGetRelationName(delstate->irel))));
8111
8112 if (ItemIdHasStorage(iid))
8113 {
8114 HeapTupleHeader htup;
8115
8116 Assert(ItemIdIsNormal(iid));
8117 htup = (HeapTupleHeader) PageGetItem(page, iid);
8118
8120 ereport(ERROR,
8121 (errcode(ERRCODE_INDEX_CORRUPTED),
8122 errmsg_internal("heap tid from index tuple (%u,%u) points to heap-only tuple at offset %u of block %u in index \"%s\"",
8124 indexpagehoffnum,
8125 istatus->idxoffnum, delstate->iblknum,
8126 RelationGetRelationName(delstate->irel))));
8127 }
8128}
8129
8130/*
8131 * heapam implementation of tableam's index_delete_tuples interface.
8132 *
8133 * This helper function is called by index AMs during index tuple deletion.
8134 * See tableam header comments for an explanation of the interface implemented
8135 * here and a general theory of operation. Note that each call here is either
8136 * a simple index deletion call, or a bottom-up index deletion call.
8137 *
8138 * It's possible for this to generate a fair amount of I/O, since we may be
8139 * deleting hundreds of tuples from a single index block. To amortize that
8140 * cost to some degree, this uses prefetching and combines repeat accesses to
8141 * the same heap block.
8142 */
8145{
8146 /* Initial assumption is that earlier pruning took care of conflict */
8147 TransactionId snapshotConflictHorizon = InvalidTransactionId;
8150 Page page = NULL;
8152 TransactionId priorXmax;
8153#ifdef USE_PREFETCH
8154 IndexDeletePrefetchState prefetch_state;
8155 int prefetch_distance;
8156#endif
8157 SnapshotData SnapshotNonVacuumable;
8158 int finalndeltids = 0,
8159 nblocksaccessed = 0;
8160
8161 /* State that's only used in bottom-up index deletion case */
8162 int nblocksfavorable = 0;
8163 int curtargetfreespace = delstate->bottomupfreespace,
8164 lastfreespace = 0,
8165 actualfreespace = 0;
8166 bool bottomup_final_block = false;
8167
8168 InitNonVacuumableSnapshot(SnapshotNonVacuumable, GlobalVisTestFor(rel));
8169
8170 /* Sort caller's deltids array by TID for further processing */
8171 index_delete_sort(delstate);
8172
8173 /*
8174 * Bottom-up case: resort deltids array in an order attuned to where the
8175 * greatest number of promising TIDs are to be found, and determine how
8176 * many blocks from the start of sorted array should be considered
8177 * favorable. This will also shrink the deltids array in order to
8178 * eliminate completely unfavorable blocks up front.
8179 */
8180 if (delstate->bottomup)
8181 nblocksfavorable = bottomup_sort_and_shrink(delstate);
8182
8183#ifdef USE_PREFETCH
8184 /* Initialize prefetch state. */
8185 prefetch_state.cur_hblkno = InvalidBlockNumber;
8186 prefetch_state.next_item = 0;
8187 prefetch_state.ndeltids = delstate->ndeltids;
8188 prefetch_state.deltids = delstate->deltids;
8189
8190 /*
8191 * Determine the prefetch distance that we will attempt to maintain.
8192 *
8193 * Since the caller holds a buffer lock somewhere in rel, we'd better make
8194 * sure that isn't a catalog relation before we call code that does
8195 * syscache lookups, to avoid risk of deadlock.
8196 */
8197 if (IsCatalogRelation(rel))
8198 prefetch_distance = maintenance_io_concurrency;
8199 else
8200 prefetch_distance =
8202
8203 /* Cap initial prefetch distance for bottom-up deletion caller */
8204 if (delstate->bottomup)
8205 {
8206 Assert(nblocksfavorable >= 1);
8207 Assert(nblocksfavorable <= BOTTOMUP_MAX_NBLOCKS);
8208 prefetch_distance = Min(prefetch_distance, nblocksfavorable);
8209 }
8210
8211 /* Start prefetching. */
8212 index_delete_prefetch_buffer(rel, &prefetch_state, prefetch_distance);
8213#endif
8214
8215 /* Iterate over deltids, determine which to delete, check their horizon */
8216 Assert(delstate->ndeltids > 0);
8217 for (int i = 0; i < delstate->ndeltids; i++)
8218 {
8219 TM_IndexDelete *ideltid = &delstate->deltids[i];
8220 TM_IndexStatus *istatus = delstate->status + ideltid->id;
8221 ItemPointer htid = &ideltid->tid;
8222 OffsetNumber offnum;
8223
8224 /*
8225 * Read buffer, and perform required extra steps each time a new block
8226 * is encountered. Avoid refetching if it's the same block as the one
8227 * from the last htid.
8228 */
8229 if (blkno == InvalidBlockNumber ||
8230 ItemPointerGetBlockNumber(htid) != blkno)
8231 {
8232 /*
8233 * Consider giving up early for bottom-up index deletion caller
8234 * first. (Only prefetch next-next block afterwards, when it
8235 * becomes clear that we're at least going to access the next
8236 * block in line.)
8237 *
8238 * Sometimes the first block frees so much space for bottom-up
8239 * caller that the deletion process can end without accessing any
8240 * more blocks. It is usually necessary to access 2 or 3 blocks
8241 * per bottom-up deletion operation, though.
8242 */
8243 if (delstate->bottomup)
8244 {
8245 /*
8246 * We often allow caller to delete a few additional items
8247 * whose entries we reached after the point that space target
8248 * from caller was satisfied. The cost of accessing the page
8249 * was already paid at that point, so it made sense to finish
8250 * it off. When that happened, we finalize everything here
8251 * (by finishing off the whole bottom-up deletion operation
8252 * without needlessly paying the cost of accessing any more
8253 * blocks).
8254 */
8255 if (bottomup_final_block)
8256 break;
8257
8258 /*
8259 * Give up when we didn't enable our caller to free any
8260 * additional space as a result of processing the page that we
8261 * just finished up with. This rule is the main way in which
8262 * we keep the cost of bottom-up deletion under control.
8263 */
8264 if (nblocksaccessed >= 1 && actualfreespace == lastfreespace)
8265 break;
8266 lastfreespace = actualfreespace; /* for next time */
8267
8268 /*
8269 * Deletion operation (which is bottom-up) will definitely
8270 * access the next block in line. Prepare for that now.
8271 *
8272 * Decay target free space so that we don't hang on for too
8273 * long with a marginal case. (Space target is only truly
8274 * helpful when it allows us to recognize that we don't need
8275 * to access more than 1 or 2 blocks to satisfy caller due to
8276 * agreeable workload characteristics.)
8277 *
8278 * We are a bit more patient when we encounter contiguous
8279 * blocks, though: these are treated as favorable blocks. The
8280 * decay process is only applied when the next block in line
8281 * is not a favorable/contiguous block. This is not an
8282 * exception to the general rule; we still insist on finding
8283 * at least one deletable item per block accessed. See
8284 * bottomup_nblocksfavorable() for full details of the theory
8285 * behind favorable blocks and heap block locality in general.
8286 *
8287 * Note: The first block in line is always treated as a
8288 * favorable block, so the earliest possible point that the
8289 * decay can be applied is just before we access the second
8290 * block in line. The Assert() verifies this for us.
8291 */
8292 Assert(nblocksaccessed > 0 || nblocksfavorable > 0);
8293 if (nblocksfavorable > 0)
8294 nblocksfavorable--;
8295 else
8296 curtargetfreespace /= 2;
8297 }
8298
8299 /* release old buffer */
8300 if (BufferIsValid(buf))
8302
8303 blkno = ItemPointerGetBlockNumber(htid);
8304 buf = ReadBuffer(rel, blkno);
8305 nblocksaccessed++;
8306 Assert(!delstate->bottomup ||
8307 nblocksaccessed <= BOTTOMUP_MAX_NBLOCKS);
8308
8309#ifdef USE_PREFETCH
8310
8311 /*
8312 * To maintain the prefetch distance, prefetch one more page for
8313 * each page we read.
8314 */
8315 index_delete_prefetch_buffer(rel, &prefetch_state, 1);
8316#endif
8317
8319
8320 page = BufferGetPage(buf);
8321 maxoff = PageGetMaxOffsetNumber(page);
8322 }
8323
8324 /*
8325 * In passing, detect index corruption involving an index page with a
8326 * TID that points to a location in the heap that couldn't possibly be
8327 * correct. We only do this with actual TIDs from caller's index page
8328 * (not items reached by traversing through a HOT chain).
8329 */
8330 index_delete_check_htid(delstate, page, maxoff, htid, istatus);
8331
8332 if (istatus->knowndeletable)
8333 Assert(!delstate->bottomup && !istatus->promising);
8334 else
8335 {
8336 ItemPointerData tmp = *htid;
8337 HeapTupleData heapTuple;
8338
8339 /* Are any tuples from this HOT chain non-vacuumable? */
8340 if (heap_hot_search_buffer(&tmp, rel, buf, &SnapshotNonVacuumable,
8341 &heapTuple, NULL, true))
8342 continue; /* can't delete entry */
8343
8344 /* Caller will delete, since whole HOT chain is vacuumable */
8345 istatus->knowndeletable = true;
8346
8347 /* Maintain index free space info for bottom-up deletion case */
8348 if (delstate->bottomup)
8349 {
8350 Assert(istatus->freespace > 0);
8351 actualfreespace += istatus->freespace;
8352 if (actualfreespace >= curtargetfreespace)
8353 bottomup_final_block = true;
8354 }
8355 }
8356
8357 /*
8358 * Maintain snapshotConflictHorizon value for deletion operation as a
8359 * whole by advancing current value using heap tuple headers. This is
8360 * loosely based on the logic for pruning a HOT chain.
8361 */
8362 offnum = ItemPointerGetOffsetNumber(htid);
8363 priorXmax = InvalidTransactionId; /* cannot check first XMIN */
8364 for (;;)
8365 {
8366 ItemId lp;
8367 HeapTupleHeader htup;
8368
8369 /* Sanity check (pure paranoia) */
8370 if (offnum < FirstOffsetNumber)
8371 break;
8372
8373 /*
8374 * An offset past the end of page's line pointer array is possible
8375 * when the array was truncated
8376 */
8377 if (offnum > maxoff)
8378 break;
8379
8380 lp = PageGetItemId(page, offnum);
8381 if (ItemIdIsRedirected(lp))
8382 {
8383 offnum = ItemIdGetRedirect(lp);
8384 continue;
8385 }
8386
8387 /*
8388 * We'll often encounter LP_DEAD line pointers (especially with an
8389 * entry marked knowndeletable by our caller up front). No heap
8390 * tuple headers get examined for an htid that leads us to an
8391 * LP_DEAD item. This is okay because the earlier pruning
8392 * operation that made the line pointer LP_DEAD in the first place
8393 * must have considered the original tuple header as part of
8394 * generating its own snapshotConflictHorizon value.
8395 *
8396 * Relying on XLOG_HEAP2_PRUNE_VACUUM_SCAN records like this is
8397 * the same strategy that index vacuuming uses in all cases. Index
8398 * VACUUM WAL records don't even have a snapshotConflictHorizon
8399 * field of their own for this reason.
8400 */
8401 if (!ItemIdIsNormal(lp))
8402 break;
8403
8404 htup = (HeapTupleHeader) PageGetItem(page, lp);
8405
8406 /*
8407 * Check the tuple XMIN against prior XMAX, if any
8408 */
8409 if (TransactionIdIsValid(priorXmax) &&
8411 break;
8412
8414 &snapshotConflictHorizon);
8415
8416 /*
8417 * If the tuple is not HOT-updated, then we are at the end of this
8418 * HOT-chain. No need to visit later tuples from the same update
8419 * chain (they get their own index entries) -- just move on to
8420 * next htid from index AM caller.
8421 */
8422 if (!HeapTupleHeaderIsHotUpdated(htup))
8423 break;
8424
8425 /* Advance to next HOT chain member */
8426 Assert(ItemPointerGetBlockNumber(&htup->t_ctid) == blkno);
8427 offnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
8428 priorXmax = HeapTupleHeaderGetUpdateXid(htup);
8429 }
8430
8431 /* Enable further/final shrinking of deltids for caller */
8432 finalndeltids = i + 1;
8433 }
8434
8436
8437 /*
8438 * Shrink deltids array to exclude non-deletable entries at the end. This
8439 * is not just a minor optimization. Final deltids array size might be
8440 * zero for a bottom-up caller. Index AM is explicitly allowed to rely on
8441 * ndeltids being zero in all cases with zero total deletable entries.
8442 */
8443 Assert(finalndeltids > 0 || delstate->bottomup);
8444 delstate->ndeltids = finalndeltids;
8445
8446 return snapshotConflictHorizon;
8447}
8448
8449/*
8450 * Specialized inlineable comparison function for index_delete_sort()
8451 */
8452static inline int
8454{
8455 ItemPointer tid1 = &deltid1->tid;
8456 ItemPointer tid2 = &deltid2->tid;
8457
8458 {
8461
8462 if (blk1 != blk2)
8463 return (blk1 < blk2) ? -1 : 1;
8464 }
8465 {
8468
8469 if (pos1 != pos2)
8470 return (pos1 < pos2) ? -1 : 1;
8471 }
8472
8473 Assert(false);
8474
8475 return 0;
8476}
8477
8478/*
8479 * Sort deltids array from delstate by TID. This prepares it for further
8480 * processing by heap_index_delete_tuples().
8481 *
8482 * This operation becomes a noticeable consumer of CPU cycles with some
8483 * workloads, so we go to the trouble of specialization/micro optimization.
8484 * We use shellsort for this because it's easy to specialize, compiles to
8485 * relatively few instructions, and is adaptive to presorted inputs/subsets
8486 * (which are typical here).
8487 */
8488static void
8490{
8491 TM_IndexDelete *deltids = delstate->deltids;
8492 int ndeltids = delstate->ndeltids;
8493
8494 /*
8495 * Shellsort gap sequence (taken from Sedgewick-Incerpi paper).
8496 *
8497 * This implementation is fast with array sizes up to ~4500. This covers
8498 * all supported BLCKSZ values.
8499 */
8500 const int gaps[9] = {1968, 861, 336, 112, 48, 21, 7, 3, 1};
8501
8502 /* Think carefully before changing anything here -- keep swaps cheap */
8503 StaticAssertDecl(sizeof(TM_IndexDelete) <= 8,
8504 "element size exceeds 8 bytes");
8505
8506 for (int g = 0; g < lengthof(gaps); g++)
8507 {
8508 for (int hi = gaps[g], i = hi; i < ndeltids; i++)
8509 {
8510 TM_IndexDelete d = deltids[i];
8511 int j = i;
8512
8513 while (j >= hi && index_delete_sort_cmp(&deltids[j - hi], &d) >= 0)
8514 {
8515 deltids[j] = deltids[j - hi];
8516 j -= hi;
8517 }
8518 deltids[j] = d;
8519 }
8520 }
8521}
8522
8523/*
8524 * Returns how many blocks should be considered favorable/contiguous for a
8525 * bottom-up index deletion pass. This is a number of heap blocks that starts
8526 * from and includes the first block in line.
8527 *
8528 * There is always at least one favorable block during bottom-up index
8529 * deletion. In the worst case (i.e. with totally random heap blocks) the
8530 * first block in line (the only favorable block) can be thought of as a
8531 * degenerate array of contiguous blocks that consists of a single block.
8532 * heap_index_delete_tuples() will expect this.
8533 *
8534 * Caller passes blockgroups, a description of the final order that deltids
8535 * will be sorted in for heap_index_delete_tuples() bottom-up index deletion
8536 * processing. Note that deltids need not actually be sorted just yet (caller
8537 * only passes deltids to us so that we can interpret blockgroups).
8538 *
8539 * You might guess that the existence of contiguous blocks cannot matter much,
8540 * since in general the main factor that determines which blocks we visit is
8541 * the number of promising TIDs, which is a fixed hint from the index AM.
8542 * We're not really targeting the general case, though -- the actual goal is
8543 * to adapt our behavior to a wide variety of naturally occurring conditions.
8544 * The effects of most of the heuristics we apply are only noticeable in the
8545 * aggregate, over time and across many _related_ bottom-up index deletion
8546 * passes.
8547 *
8548 * Deeming certain blocks favorable allows heapam to recognize and adapt to
8549 * workloads where heap blocks visited during bottom-up index deletion can be
8550 * accessed contiguously, in the sense that each newly visited block is the
8551 * neighbor of the block that bottom-up deletion just finished processing (or
8552 * close enough to it). It will likely be cheaper to access more favorable
8553 * blocks sooner rather than later (e.g. in this pass, not across a series of
8554 * related bottom-up passes). Either way it is probably only a matter of time
8555 * (or a matter of further correlated version churn) before all blocks that
8556 * appear together as a single large batch of favorable blocks get accessed by
8557 * _some_ bottom-up pass. Large batches of favorable blocks tend to either
8558 * appear almost constantly or not even once (it all depends on per-index
8559 * workload characteristics).
8560 *
8561 * Note that the blockgroups sort order applies a power-of-two bucketing
8562 * scheme that creates opportunities for contiguous groups of blocks to get
8563 * batched together, at least with workloads that are naturally amenable to
8564 * being driven by heap block locality. This doesn't just enhance the spatial
8565 * locality of bottom-up heap block processing in the obvious way. It also
8566 * enables temporal locality of access, since sorting by heap block number
8567 * naturally tends to make the bottom-up processing order deterministic.
8568 *
8569 * Consider the following example to get a sense of how temporal locality
8570 * might matter: There is a heap relation with several indexes, each of which
8571 * is low to medium cardinality. It is subject to constant non-HOT updates.
8572 * The updates are skewed (in one part of the primary key, perhaps). None of
8573 * the indexes are logically modified by the UPDATE statements (if they were
8574 * then bottom-up index deletion would not be triggered in the first place).
8575 * Naturally, each new round of index tuples (for each heap tuple that gets a
8576 * heap_update() call) will have the same heap TID in each and every index.
8577 * Since these indexes are low cardinality and never get logically modified,
8578 * heapam processing during bottom-up deletion passes will access heap blocks
8579 * in approximately sequential order. Temporal locality of access occurs due
8580 * to bottom-up deletion passes behaving very similarly across each of the
8581 * indexes at any given moment. This keeps the number of buffer misses needed
8582 * to visit heap blocks to a minimum.
8583 */
8584static int
8585bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups,
8586 TM_IndexDelete *deltids)
8587{
8588 int64 lastblock = -1;
8589 int nblocksfavorable = 0;
8590
8591 Assert(nblockgroups >= 1);
8592 Assert(nblockgroups <= BOTTOMUP_MAX_NBLOCKS);
8593
8594 /*
8595 * We tolerate heap blocks that will be accessed only slightly out of
8596 * physical order. Small blips occur when a pair of almost-contiguous
8597 * blocks happen to fall into different buckets (perhaps due only to a
8598 * small difference in npromisingtids that the bucketing scheme didn't
8599 * quite manage to ignore). We effectively ignore these blips by applying
8600 * a small tolerance. The precise tolerance we use is a little arbitrary,
8601 * but it works well enough in practice.
8602 */
8603 for (int b = 0; b < nblockgroups; b++)
8604 {
8605 IndexDeleteCounts *group = blockgroups + b;
8606 TM_IndexDelete *firstdtid = deltids + group->ifirsttid;
8607 BlockNumber block = ItemPointerGetBlockNumber(&firstdtid->tid);
8608
8609 if (lastblock != -1 &&
8610 ((int64) block < lastblock - BOTTOMUP_TOLERANCE_NBLOCKS ||
8611 (int64) block > lastblock + BOTTOMUP_TOLERANCE_NBLOCKS))
8612 break;
8613
8614 nblocksfavorable++;
8615 lastblock = block;
8616 }
8617
8618 /* Always indicate that there is at least 1 favorable block */
8619 Assert(nblocksfavorable >= 1);
8620
8621 return nblocksfavorable;
8622}
8623
8624/*
8625 * qsort comparison function for bottomup_sort_and_shrink()
8626 */
8627static int
8628bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
8629{
8630 const IndexDeleteCounts *group1 = (const IndexDeleteCounts *) arg1;
8631 const IndexDeleteCounts *group2 = (const IndexDeleteCounts *) arg2;
8632
8633 /*
8634 * Most significant field is npromisingtids (which we invert the order of
8635 * so as to sort in desc order).
8636 *
8637 * Caller should have already normalized npromisingtids fields into
8638 * power-of-two values (buckets).
8639 */
8640 if (group1->npromisingtids > group2->npromisingtids)
8641 return -1;
8642 if (group1->npromisingtids < group2->npromisingtids)
8643 return 1;
8644
8645 /*
8646 * Tiebreak: desc ntids sort order.
8647 *
8648 * We cannot expect power-of-two values for ntids fields. We should
8649 * behave as if they were already rounded up for us instead.
8650 */
8651 if (group1->ntids != group2->ntids)
8652 {
8653 uint32 ntids1 = pg_nextpower2_32((uint32) group1->ntids);
8654 uint32 ntids2 = pg_nextpower2_32((uint32) group2->ntids);
8655
8656 if (ntids1 > ntids2)
8657 return -1;
8658 if (ntids1 < ntids2)
8659 return 1;
8660 }
8661
8662 /*
8663 * Tiebreak: asc offset-into-deltids-for-block (offset to first TID for
8664 * block in deltids array) order.
8665 *
8666 * This is equivalent to sorting in ascending heap block number order
8667 * (among otherwise equal subsets of the array). This approach allows us
8668 * to avoid accessing the out-of-line TID. (We rely on the assumption
8669 * that the deltids array was sorted in ascending heap TID order when
8670 * these offsets to the first TID from each heap block group were formed.)
8671 */
8672 if (group1->ifirsttid > group2->ifirsttid)
8673 return 1;
8674 if (group1->ifirsttid < group2->ifirsttid)
8675 return -1;
8676
8678
8679 return 0;
8680}
8681
8682/*
8683 * heap_index_delete_tuples() helper function for bottom-up deletion callers.
8684 *
8685 * Sorts deltids array in the order needed for useful processing by bottom-up
8686 * deletion. The array should already be sorted in TID order when we're
8687 * called. The sort process groups heap TIDs from deltids into heap block
8688 * groupings. Earlier/more-promising groups/blocks are usually those that are
8689 * known to have the most "promising" TIDs.
8690 *
8691 * Sets new size of deltids array (ndeltids) in state. deltids will only have
8692 * TIDs from the BOTTOMUP_MAX_NBLOCKS most promising heap blocks when we
8693 * return. This often means that deltids will be shrunk to a small fraction
8694 * of its original size (we eliminate many heap blocks from consideration for
8695 * caller up front).
8696 *
8697 * Returns the number of "favorable" blocks. See bottomup_nblocksfavorable()
8698 * for a definition and full details.
8699 */
8700static int
8702{
8703 IndexDeleteCounts *blockgroups;
8704 TM_IndexDelete *reordereddeltids;
8706 int nblockgroups = 0;
8707 int ncopied = 0;
8708 int nblocksfavorable = 0;
8709
8710 Assert(delstate->bottomup);
8711 Assert(delstate->ndeltids > 0);
8712
8713 /* Calculate per-heap-block count of TIDs */
8714 blockgroups = palloc(sizeof(IndexDeleteCounts) * delstate->ndeltids);
8715 for (int i = 0; i < delstate->ndeltids; i++)
8716 {
8717 TM_IndexDelete *ideltid = &delstate->deltids[i];
8718 TM_IndexStatus *istatus = delstate->status + ideltid->id;
8719 ItemPointer htid = &ideltid->tid;
8720 bool promising = istatus->promising;
8721
8722 if (curblock != ItemPointerGetBlockNumber(htid))
8723 {
8724 /* New block group */
8725 nblockgroups++;
8726
8727 Assert(curblock < ItemPointerGetBlockNumber(htid) ||
8728 !BlockNumberIsValid(curblock));
8729
8730 curblock = ItemPointerGetBlockNumber(htid);
8731 blockgroups[nblockgroups - 1].ifirsttid = i;
8732 blockgroups[nblockgroups - 1].ntids = 1;
8733 blockgroups[nblockgroups - 1].npromisingtids = 0;
8734 }
8735 else
8736 {
8737 blockgroups[nblockgroups - 1].ntids++;
8738 }
8739
8740 if (promising)
8741 blockgroups[nblockgroups - 1].npromisingtids++;
8742 }
8743
8744 /*
8745 * We're about ready to sort block groups to determine the optimal order
8746 * for visiting heap blocks. But before we do, round the number of
8747 * promising tuples for each block group up to the next power-of-two,
8748 * unless it is very low (less than 4), in which case we round up to 4.
8749 * npromisingtids is far too noisy to trust when choosing between a pair
8750 * of block groups that both have very low values.
8751 *
8752 * This scheme divides heap blocks/block groups into buckets. Each bucket
8753 * contains blocks that have _approximately_ the same number of promising
8754 * TIDs as each other. The goal is to ignore relatively small differences
8755 * in the total number of promising entries, so that the whole process can
8756 * give a little weight to heapam factors (like heap block locality)
8757 * instead. This isn't a trade-off, really -- we have nothing to lose. It
8758 * would be foolish to interpret small differences in npromisingtids
8759 * values as anything more than noise.
8760 *
8761 * We tiebreak on nhtids when sorting block group subsets that have the
8762 * same npromisingtids, but this has the same issues as npromisingtids,
8763 * and so nhtids is subject to the same power-of-two bucketing scheme. The
8764 * only reason that we don't fix nhtids in the same way here too is that
8765 * we'll need accurate nhtids values after the sort. We handle nhtids
8766 * bucketization dynamically instead (in the sort comparator).
8767 *
8768 * See bottomup_nblocksfavorable() for a full explanation of when and how
8769 * heap locality/favorable blocks can significantly influence when and how
8770 * heap blocks are accessed.
8771 */
8772 for (int b = 0; b < nblockgroups; b++)
8773 {
8774 IndexDeleteCounts *group = blockgroups + b;
8775
8776 /* Better off falling back on nhtids with low npromisingtids */
8777 if (group->npromisingtids <= 4)
8778 group->npromisingtids = 4;
8779 else
8780 group->npromisingtids =
8782 }
8783
8784 /* Sort groups and rearrange caller's deltids array */
8785 qsort(blockgroups, nblockgroups, sizeof(IndexDeleteCounts),
8787 reordereddeltids = palloc(delstate->ndeltids * sizeof(TM_IndexDelete));
8788
8789 nblockgroups = Min(BOTTOMUP_MAX_NBLOCKS, nblockgroups);
8790 /* Determine number of favorable blocks at the start of final deltids */
8791 nblocksfavorable = bottomup_nblocksfavorable(blockgroups, nblockgroups,
8792 delstate->deltids);
8793
8794 for (int b = 0; b < nblockgroups; b++)
8795 {
8796 IndexDeleteCounts *group = blockgroups + b;
8797 TM_IndexDelete *firstdtid = delstate->deltids + group->ifirsttid;
8798
8799 memcpy(reordereddeltids + ncopied, firstdtid,
8800 sizeof(TM_IndexDelete) * group->ntids);
8801 ncopied += group->ntids;
8802 }
8803
8804 /* Copy final grouped and sorted TIDs back into start of caller's array */
8805 memcpy(delstate->deltids, reordereddeltids,
8806 sizeof(TM_IndexDelete) * ncopied);
8807 delstate->ndeltids = ncopied;
8808
8809 pfree(reordereddeltids);
8810 pfree(blockgroups);
8811
8812 return nblocksfavorable;
8813}
8814
8815/*
8816 * Perform XLogInsert for a heap-visible operation. 'block' is the block
8817 * being marked all-visible, and vm_buffer is the buffer containing the
8818 * corresponding visibility map block. Both should have already been modified
8819 * and dirtied.
8820 *
8821 * snapshotConflictHorizon comes from the largest xmin on the page being
8822 * marked all-visible. REDO routine uses it to generate recovery conflicts.
8823 *
8824 * If checksums or wal_log_hints are enabled, we may also generate a full-page
8825 * image of heap_buffer. Otherwise, we optimize away the FPI (by specifying
8826 * REGBUF_NO_IMAGE for the heap buffer), in which case the caller should *not*
8827 * update the heap page's LSN.
8828 */
8830log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer,
8831 TransactionId snapshotConflictHorizon, uint8 vmflags)
8832{
8833 xl_heap_visible xlrec;
8834 XLogRecPtr recptr;
8835 uint8 flags;
8836
8837 Assert(BufferIsValid(heap_buffer));
8838 Assert(BufferIsValid(vm_buffer));
8839
8840 xlrec.snapshotConflictHorizon = snapshotConflictHorizon;
8841 xlrec.flags = vmflags;
8846
8847 XLogRegisterBuffer(0, vm_buffer, 0);
8848
8849 flags = REGBUF_STANDARD;
8850 if (!XLogHintBitIsNeeded())
8851 flags |= REGBUF_NO_IMAGE;
8852 XLogRegisterBuffer(1, heap_buffer, flags);
8853
8854 recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_VISIBLE);
8855
8856 return recptr;
8857}
8858
8859/*
8860 * Perform XLogInsert for a heap-update operation. Caller must already
8861 * have modified the buffer(s) and marked them dirty.
8862 */
8863static XLogRecPtr
8865 Buffer newbuf, HeapTuple oldtup, HeapTuple newtup,
8866 HeapTuple old_key_tuple,
8867 bool all_visible_cleared, bool new_all_visible_cleared)
8868{
8869 xl_heap_update xlrec;
8870 xl_heap_header xlhdr;
8871 xl_heap_header xlhdr_idx;
8872 uint8 info;
8873 uint16 prefix_suffix[2];
8874 uint16 prefixlen = 0,
8875 suffixlen = 0;
8876 XLogRecPtr recptr;
8877 Page page = BufferGetPage(newbuf);
8878 bool need_tuple_data = RelationIsLogicallyLogged(reln);
8879 bool init;
8880 int bufflags;
8881
8882 /* Caller should not call me on a non-WAL-logged relation */
8883 Assert(RelationNeedsWAL(reln));
8884
8886
8887 if (HeapTupleIsHeapOnly(newtup))
8888 info = XLOG_HEAP_HOT_UPDATE;
8889 else
8890 info = XLOG_HEAP_UPDATE;
8891
8892 /*
8893 * If the old and new tuple are on the same page, we only need to log the
8894 * parts of the new tuple that were changed. That saves on the amount of
8895 * WAL we need to write. Currently, we just count any unchanged bytes in
8896 * the beginning and end of the tuple. That's quick to check, and
8897 * perfectly covers the common case that only one field is updated.
8898 *
8899 * We could do this even if the old and new tuple are on different pages,
8900 * but only if we don't make a full-page image of the old page, which is
8901 * difficult to know in advance. Also, if the old tuple is corrupt for
8902 * some reason, it would allow the corruption to propagate the new page,
8903 * so it seems best to avoid. Under the general assumption that most
8904 * updates tend to create the new tuple version on the same page, there
8905 * isn't much to be gained by doing this across pages anyway.
8906 *
8907 * Skip this if we're taking a full-page image of the new page, as we
8908 * don't include the new tuple in the WAL record in that case. Also
8909 * disable if wal_level='logical', as logical decoding needs to be able to
8910 * read the new tuple in whole from the WAL record alone.
8911 */
8912 if (oldbuf == newbuf && !need_tuple_data &&
8914 {
8915 char *oldp = (char *) oldtup->t_data + oldtup->t_data->t_hoff;
8916 char *newp = (char *) newtup->t_data + newtup->t_data->t_hoff;
8917 int oldlen = oldtup->t_len - oldtup->t_data->t_hoff;
8918 int newlen = newtup->t_len - newtup->t_data->t_hoff;
8919
8920 /* Check for common prefix between old and new tuple */
8921 for (prefixlen = 0; prefixlen < Min(oldlen, newlen); prefixlen++)
8922 {
8923 if (newp[prefixlen] != oldp[prefixlen])
8924 break;
8925 }
8926
8927 /*
8928 * Storing the length of the prefix takes 2 bytes, so we need to save
8929 * at least 3 bytes or there's no point.
8930 */
8931 if (prefixlen < 3)
8932 prefixlen = 0;
8933
8934 /* Same for suffix */
8935 for (suffixlen = 0; suffixlen < Min(oldlen, newlen) - prefixlen; suffixlen++)
8936 {
8937 if (newp[newlen - suffixlen - 1] != oldp[oldlen - suffixlen - 1])
8938 break;
8939 }
8940 if (suffixlen < 3)
8941 suffixlen = 0;
8942 }
8943
8944 /* Prepare main WAL data chain */
8945 xlrec.flags = 0;
8946 if (all_visible_cleared)
8948 if (new_all_visible_cleared)
8950 if (prefixlen > 0)
8952 if (suffixlen > 0)
8954 if (need_tuple_data)
8955 {
8957 if (old_key_tuple)
8958 {
8959 if (reln->rd_rel->relreplident == REPLICA_IDENTITY_FULL)
8961 else
8963 }
8964 }
8965
8966 /* If new tuple is the single and first tuple on page... */
8969 {
8970 info |= XLOG_HEAP_INIT_PAGE;
8971 init = true;
8972 }
8973 else
8974 init = false;
8975
8976 /* Prepare WAL data for the old page */
8978 xlrec.old_xmax = HeapTupleHeaderGetRawXmax(oldtup->t_data);
8980 oldtup->t_data->t_infomask2);
8981
8982 /* Prepare WAL data for the new page */
8984 xlrec.new_xmax = HeapTupleHeaderGetRawXmax(newtup->t_data);
8985
8986 bufflags = REGBUF_STANDARD;
8987 if (init)
8988 bufflags |= REGBUF_WILL_INIT;
8989 if (need_tuple_data)
8990 bufflags |= REGBUF_KEEP_DATA;
8991
8992 XLogRegisterBuffer(0, newbuf, bufflags);
8993 if (oldbuf != newbuf)
8995
8997
8998 /*
8999 * Prepare WAL data for the new tuple.
9000 */
9001 if (prefixlen > 0 || suffixlen > 0)
9002 {
9003 if (prefixlen > 0 && suffixlen > 0)
9004 {
9005 prefix_suffix[0] = prefixlen;
9006 prefix_suffix[1] = suffixlen;
9007 XLogRegisterBufData(0, &prefix_suffix, sizeof(uint16) * 2);
9008 }
9009 else if (prefixlen > 0)
9010 {
9011 XLogRegisterBufData(0, &prefixlen, sizeof(uint16));
9012 }
9013 else
9014 {
9015 XLogRegisterBufData(0, &suffixlen, sizeof(uint16));
9016 }
9017 }
9018
9019 xlhdr.t_infomask2 = newtup->t_data->t_infomask2;
9020 xlhdr.t_infomask = newtup->t_data->t_infomask;
9021 xlhdr.t_hoff = newtup->t_data->t_hoff;
9022 Assert(SizeofHeapTupleHeader + prefixlen + suffixlen <= newtup->t_len);
9023
9024 /*
9025 * PG73FORMAT: write bitmap [+ padding] [+ oid] + data
9026 *
9027 * The 'data' doesn't include the common prefix or suffix.
9028 */
9030 if (prefixlen == 0)
9031 {
9033 (char *) newtup->t_data + SizeofHeapTupleHeader,
9034 newtup->t_len - SizeofHeapTupleHeader - suffixlen);
9035 }
9036 else
9037 {
9038 /*
9039 * Have to write the null bitmap and data after the common prefix as
9040 * two separate rdata entries.
9041 */
9042 /* bitmap [+ padding] [+ oid] */
9043 if (newtup->t_data->t_hoff - SizeofHeapTupleHeader > 0)
9044 {
9046 (char *) newtup->t_data + SizeofHeapTupleHeader,
9048 }
9049
9050 /* data after common prefix */
9052 (char *) newtup->t_data + newtup->t_data->t_hoff + prefixlen,
9053 newtup->t_len - newtup->t_data->t_hoff - prefixlen - suffixlen);
9054 }
9055
9056 /* We need to log a tuple identity */
9057 if (need_tuple_data && old_key_tuple)
9058 {
9059 /* don't really need this, but its more comfy to decode */
9060 xlhdr_idx.t_infomask2 = old_key_tuple->t_data->t_infomask2;
9061 xlhdr_idx.t_infomask = old_key_tuple->t_data->t_infomask;
9062 xlhdr_idx.t_hoff = old_key_tuple->t_data->t_hoff;
9063
9065
9066 /* PG73FORMAT: write bitmap [+ padding] [+ oid] + data */
9067 XLogRegisterData((char *) old_key_tuple->t_data + SizeofHeapTupleHeader,
9068 old_key_tuple->t_len - SizeofHeapTupleHeader);
9069 }
9070
9071 /* filtering by origin on a row level is much more efficient */
9073
9074 recptr = XLogInsert(RM_HEAP_ID, info);
9075
9076 return recptr;
9077}
9078
9079/*
9080 * Perform XLogInsert of an XLOG_HEAP2_NEW_CID record
9081 *
9082 * This is only used in wal_level >= WAL_LEVEL_LOGICAL, and only for catalog
9083 * tuples.
9084 */
9085static XLogRecPtr
9087{
9088 xl_heap_new_cid xlrec;
9089
9090 XLogRecPtr recptr;
9091 HeapTupleHeader hdr = tup->t_data;
9092
9094 Assert(tup->t_tableOid != InvalidOid);
9095
9096 xlrec.top_xid = GetTopTransactionId();
9097 xlrec.target_locator = relation->rd_locator;
9098 xlrec.target_tid = tup->t_self;
9099
9100 /*
9101 * If the tuple got inserted & deleted in the same TX we definitely have a
9102 * combo CID, set cmin and cmax.
9103 */
9104 if (hdr->t_infomask & HEAP_COMBOCID)
9105 {
9108 xlrec.cmin = HeapTupleHeaderGetCmin(hdr);
9109 xlrec.cmax = HeapTupleHeaderGetCmax(hdr);
9111 }
9112 /* No combo CID, so only cmin or cmax can be set by this TX */
9113 else
9114 {
9115 /*
9116 * Tuple inserted.
9117 *
9118 * We need to check for LOCK ONLY because multixacts might be
9119 * transferred to the new tuple in case of FOR KEY SHARE updates in
9120 * which case there will be an xmax, although the tuple just got
9121 * inserted.
9122 */
9123 if (hdr->t_infomask & HEAP_XMAX_INVALID ||
9125 {
9127 xlrec.cmax = InvalidCommandId;
9128 }
9129 /* Tuple from a different tx updated or deleted. */
9130 else
9131 {
9132 xlrec.cmin = InvalidCommandId;
9134 }
9135 xlrec.combocid = InvalidCommandId;
9136 }
9137
9138 /*
9139 * Note that we don't need to register the buffer here, because this
9140 * operation does not modify the page. The insert/update/delete that
9141 * called us certainly did, but that's WAL-logged separately.
9142 */
9145
9146 /* will be looked at irrespective of origin */
9147
9148 recptr = XLogInsert(RM_HEAP2_ID, XLOG_HEAP2_NEW_CID);
9149
9150 return recptr;
9151}
9152
9153/*
9154 * Build a heap tuple representing the configured REPLICA IDENTITY to represent
9155 * the old tuple in an UPDATE or DELETE.
9156 *
9157 * Returns NULL if there's no need to log an identity or if there's no suitable
9158 * key defined.
9159 *
9160 * Pass key_required true if any replica identity columns changed value, or if
9161 * any of them have any external data. Delete must always pass true.
9162 *
9163 * *copy is set to true if the returned tuple is a modified copy rather than
9164 * the same tuple that was passed in.
9165 */
9166static HeapTuple
9167ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required,
9168 bool *copy)
9169{
9170 TupleDesc desc = RelationGetDescr(relation);
9171 char replident = relation->rd_rel->relreplident;
9172 Bitmapset *idattrs;
9173 HeapTuple key_tuple;
9174 bool nulls[MaxHeapAttributeNumber];
9176
9177 *copy = false;
9178
9179 if (!RelationIsLogicallyLogged(relation))
9180 return NULL;
9181
9182 if (replident == REPLICA_IDENTITY_NOTHING)
9183 return NULL;
9184
9185 if (replident == REPLICA_IDENTITY_FULL)
9186 {
9187 /*
9188 * When logging the entire old tuple, it very well could contain
9189 * toasted columns. If so, force them to be inlined.
9190 */
9191 if (HeapTupleHasExternal(tp))
9192 {
9193 *copy = true;
9194 tp = toast_flatten_tuple(tp, desc);
9195 }
9196 return tp;
9197 }
9198
9199 /* if the key isn't required and we're only logging the key, we're done */
9200 if (!key_required)
9201 return NULL;
9202
9203 /* find out the replica identity columns */
9204 idattrs = RelationGetIndexAttrBitmap(relation,
9206
9207 /*
9208 * If there's no defined replica identity columns, treat as !key_required.
9209 * (This case should not be reachable from heap_update, since that should
9210 * calculate key_required accurately. But heap_delete just passes
9211 * constant true for key_required, so we can hit this case in deletes.)
9212 */
9213 if (bms_is_empty(idattrs))
9214 return NULL;
9215
9216 /*
9217 * Construct a new tuple containing only the replica identity columns,
9218 * with nulls elsewhere. While we're at it, assert that the replica
9219 * identity columns aren't null.
9220 */
9221 heap_deform_tuple(tp, desc, values, nulls);
9222
9223 for (int i = 0; i < desc->natts; i++)
9224 {
9226 idattrs))
9227 Assert(!nulls[i]);
9228 else
9229 nulls[i] = true;
9230 }
9231
9232 key_tuple = heap_form_tuple(desc, values, nulls);
9233 *copy = true;
9234
9235 bms_free(idattrs);
9236
9237 /*
9238 * If the tuple, which by here only contains indexed columns, still has
9239 * toasted columns, force them to be inlined. This is somewhat unlikely
9240 * since there's limits on the size of indexed columns, so we don't
9241 * duplicate toast_flatten_tuple()s functionality in the above loop over
9242 * the indexed columns, even if it would be more efficient.
9243 */
9244 if (HeapTupleHasExternal(key_tuple))
9245 {
9246 HeapTuple oldtup = key_tuple;
9247
9248 key_tuple = toast_flatten_tuple(oldtup, desc);
9249 heap_freetuple(oldtup);
9250 }
9251
9252 return key_tuple;
9253}
9254
9255/*
9256 * HeapCheckForSerializableConflictOut
9257 * We are reading a tuple. If it's not visible, there may be a
9258 * rw-conflict out with the inserter. Otherwise, if it is visible to us
9259 * but has been deleted, there may be a rw-conflict out with the deleter.
9260 *
9261 * We will determine the top level xid of the writing transaction with which
9262 * we may be in conflict, and ask CheckForSerializableConflictOut() to check
9263 * for overlap with our own transaction.
9264 *
9265 * This function should be called just about anywhere in heapam.c where a
9266 * tuple has been read. The caller must hold at least a shared lock on the
9267 * buffer, because this function might set hint bits on the tuple. There is
9268 * currently no known reason to call this function from an index AM.
9269 */
9270void
9272 HeapTuple tuple, Buffer buffer,
9273 Snapshot snapshot)
9274{
9275 TransactionId xid;
9276 HTSV_Result htsvResult;
9277
9278 if (!CheckForSerializableConflictOutNeeded(relation, snapshot))
9279 return;
9280
9281 /*
9282 * Check to see whether the tuple has been written to by a concurrent
9283 * transaction, either to create it not visible to us, or to delete it
9284 * while it is visible to us. The "visible" bool indicates whether the
9285 * tuple is visible to us, while HeapTupleSatisfiesVacuum checks what else
9286 * is going on with it.
9287 *
9288 * In the event of a concurrently inserted tuple that also happens to have
9289 * been concurrently updated (by a separate transaction), the xmin of the
9290 * tuple will be used -- not the updater's xid.
9291 */
9292 htsvResult = HeapTupleSatisfiesVacuum(tuple, TransactionXmin, buffer);
9293 switch (htsvResult)
9294 {
9295 case HEAPTUPLE_LIVE:
9296 if (visible)
9297 return;
9298 xid = HeapTupleHeaderGetXmin(tuple->t_data);
9299 break;
9302 if (visible)
9303 xid = HeapTupleHeaderGetUpdateXid(tuple->t_data);
9304 else
9305 xid = HeapTupleHeaderGetXmin(tuple->t_data);
9306
9308 {
9309 /* This is like the HEAPTUPLE_DEAD case */
9310 Assert(!visible);
9311 return;
9312 }
9313 break;
9315 xid = HeapTupleHeaderGetXmin(tuple->t_data);
9316 break;
9317 case HEAPTUPLE_DEAD:
9318 Assert(!visible);
9319 return;
9320 default:
9321
9322 /*
9323 * The only way to get to this default clause is if a new value is
9324 * added to the enum type without adding it to this switch
9325 * statement. That's a bug, so elog.
9326 */
9327 elog(ERROR, "unrecognized return value from HeapTupleSatisfiesVacuum: %u", htsvResult);
9328
9329 /*
9330 * In spite of having all enum values covered and calling elog on
9331 * this default, some compilers think this is a code path which
9332 * allows xid to be used below without initialization. Silence
9333 * that warning.
9334 */
9336 }
9337
9340
9341 /*
9342 * Find top level xid. Bail out if xid is too early to be a conflict, or
9343 * if it's our own xid.
9344 */
9346 return;
9349 return;
9350
9351 CheckForSerializableConflictOut(relation, xid, snapshot);
9352}
int16 AttrNumber
Definition: attnum.h:21
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1305
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:916
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:581
#define bms_is_empty(a)
Definition: bitmapset.h:118
uint32 BlockNumber
Definition: block.h:31
#define InvalidBlockNumber
Definition: block.h:33
static bool BlockNumberIsValid(BlockNumber blockNumber)
Definition: block.h:71
static int32 next
Definition: blutils.c:224
static Datum values[MAXATTR]
Definition: bootstrap.c:153
int Buffer
Definition: buf.h:23
#define InvalidBuffer
Definition: buf.h:25
BlockNumber BufferGetBlockNumber(Buffer buffer)
Definition: bufmgr.c:4223
PrefetchBufferResult PrefetchBuffer(Relation reln, ForkNumber forkNum, BlockNumber blockNum)
Definition: bufmgr.c:653
void BufferGetTag(Buffer buffer, RelFileLocator *rlocator, ForkNumber *forknum, BlockNumber *blknum)
Definition: bufmgr.c:4244
bool BufferIsDirty(Buffer buffer)
Definition: bufmgr.c:2911
void ReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5366
void UnlockReleaseBuffer(Buffer buffer)
Definition: bufmgr.c:5383
void MarkBufferDirty(Buffer buffer)
Definition: bufmgr.c:2943
void LockBuffer(Buffer buffer, int mode)
Definition: bufmgr.c:5604
int maintenance_io_concurrency
Definition: bufmgr.c:162
Buffer ReadBuffer(Relation reln, BlockNumber blockNum)
Definition: bufmgr.c:745
@ BAS_BULKREAD
Definition: bufmgr.h:37
@ BAS_BULKWRITE
Definition: bufmgr.h:39
#define BUFFER_LOCK_UNLOCK
Definition: bufmgr.h:203
#define BUFFER_LOCK_SHARE
Definition: bufmgr.h:204
#define RelationGetNumberOfBlocks(reln)
Definition: bufmgr.h:291
static Page BufferGetPage(Buffer buffer)
Definition: bufmgr.h:433
static Block BufferGetBlock(Buffer buffer)
Definition: bufmgr.h:400
#define BUFFER_LOCK_EXCLUSIVE
Definition: bufmgr.h:205
static bool BufferIsValid(Buffer bufnum)
Definition: bufmgr.h:384
Size PageGetHeapFreeSpace(const PageData *page)
Definition: bufpage.c:990
PageHeaderData * PageHeader
Definition: bufpage.h:173
static bool PageIsAllVisible(const PageData *page)
Definition: bufpage.h:428
static void PageClearAllVisible(Page page)
Definition: bufpage.h:438
static void * PageGetItem(const PageData *page, const ItemIdData *itemId)
Definition: bufpage.h:353
#define SizeOfPageHeaderData
Definition: bufpage.h:216
static void PageSetAllVisible(Page page)
Definition: bufpage.h:433
static ItemId PageGetItemId(Page page, OffsetNumber offsetNumber)
Definition: bufpage.h:243
static void PageSetFull(Page page)
Definition: bufpage.h:417
static void PageSetLSN(Page page, XLogRecPtr lsn)
Definition: bufpage.h:390
PageData * Page
Definition: bufpage.h:81
#define PageSetPrunable(page, xid)
Definition: bufpage.h:446
static OffsetNumber PageGetMaxOffsetNumber(const PageData *page)
Definition: bufpage.h:371
#define NameStr(name)
Definition: c.h:756
#define InvalidCommandId
Definition: c.h:679
#define pg_noinline
Definition: c.h:290
#define Min(x, y)
Definition: c.h:1008
#define likely(x)
Definition: c.h:406
#define MAXALIGN(LEN)
Definition: c.h:815
uint8_t uint8
Definition: c.h:541
int64_t int64
Definition: c.h:540
TransactionId MultiXactId
Definition: c.h:672
#define pg_attribute_always_inline
Definition: c.h:274
int16_t int16
Definition: c.h:538
#define SHORTALIGN(LEN)
Definition: c.h:811
uint16_t uint16
Definition: c.h:542
#define pg_unreachable()
Definition: c.h:336
#define unlikely(x)
Definition: c.h:407
uint32_t uint32
Definition: c.h:543
#define lengthof(array)
Definition: c.h:792
#define StaticAssertDecl(condition, errmessage)
Definition: c.h:940
uint32 CommandId
Definition: c.h:676
uint32 TransactionId
Definition: c.h:662
#define OidIsValid(objectId)
Definition: c.h:779
size_t Size
Definition: c.h:615
bool IsToastRelation(Relation relation)
Definition: catalog.c:206
bool IsCatalogRelation(Relation relation)
Definition: catalog.c:104
bool IsSharedRelation(Oid relationId)
Definition: catalog.c:304
bool IsInplaceUpdateRelation(Relation relation)
Definition: catalog.c:183
CommandId HeapTupleHeaderGetCmin(const HeapTupleHeaderData *tup)
Definition: combocid.c:104
void HeapTupleHeaderAdjustCmax(const HeapTupleHeaderData *tup, CommandId *cmax, bool *iscombo)
Definition: combocid.c:153
CommandId HeapTupleHeaderGetCmax(const HeapTupleHeaderData *tup)
Definition: combocid.c:118
bool datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
Definition: datum.c:223
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1170
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1243
int errcode(int sqlerrcode)
Definition: elog.c:863
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define WARNING
Definition: elog.h:36
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
HeapTuple ExecFetchSlotHeapTuple(TupleTableSlot *slot, bool materialize, bool *shouldFree)
Definition: execTuples.c:1833
TupleTableSlot * ExecStoreBufferHeapTuple(HeapTuple tuple, TupleTableSlot *slot, Buffer buffer)
Definition: execTuples.c:1581
BufferAccessStrategy GetAccessStrategy(BufferAccessStrategyType btype)
Definition: freelist.c:461
void FreeAccessStrategy(BufferAccessStrategy strategy)
Definition: freelist.c:643
int NBuffers
Definition: globals.c:142
Oid MyDatabaseTableSpace
Definition: globals.c:96
Oid MyDatabaseId
Definition: globals.c:94
Assert(PointerIsAligned(start, uint64))
void simple_heap_update(Relation relation, const ItemPointerData *otid, HeapTuple tup, TU_UpdateIndexes *update_indexes)
Definition: heapam.c:4517
static bool DoesMultiXactIdConflict(MultiXactId multi, uint16 infomask, LockTupleMode lockmode, bool *current_is_member)
Definition: heapam.c:7621
void heap_insert(Relation relation, HeapTuple tup, CommandId cid, int options, BulkInsertState bistate)
Definition: heapam.c:2103
static XLogRecPtr log_heap_new_cid(Relation relation, HeapTuple tup)
Definition: heapam.c:9086
XLogRecPtr log_heap_visible(Relation rel, Buffer heap_buffer, Buffer vm_buffer, TransactionId snapshotConflictHorizon, uint8 vmflags)
Definition: heapam.c:8830
static void compute_new_xmax_infomask(TransactionId xmax, uint16 old_infomask, uint16 old_infomask2, TransactionId add_to_xmax, LockTupleMode mode, bool is_update, TransactionId *result_xmax, uint16 *result_infomask, uint16 *result_infomask2)
Definition: heapam.c:5352
struct IndexDeleteCounts IndexDeleteCounts
static void heap_fetch_next_buffer(HeapScanDesc scan, ScanDirection dir)
Definition: heapam.c:658
static TM_Result heap_lock_updated_tuple_rec(Relation rel, const ItemPointerData *tid, TransactionId xid, LockTupleMode mode)
Definition: heapam.c:5724
bool heap_inplace_lock(Relation relation, HeapTuple oldtup_ptr, Buffer buffer, void(*release_callback)(void *), void *arg)
Definition: heapam.c:6380
bool heap_fetch(Relation relation, Snapshot snapshot, HeapTuple tuple, Buffer *userbuf, bool keep_buf)
Definition: heapam.c:1620
#define BOTTOMUP_TOLERANCE_NBLOCKS
Definition: heapam.c:185
static HeapTuple heap_prepare_insert(Relation relation, HeapTuple tup, TransactionId xid, CommandId cid, int options)
Definition: heapam.c:2294
static BlockNumber heap_scan_stream_read_next_parallel(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: heapam.c:247
int updstatus
Definition: heapam.c:126
static int bottomup_sort_and_shrink(TM_IndexDeleteOp *delstate)
Definition: heapam.c:8701
static bool heap_acquire_tuplock(Relation relation, const ItemPointerData *tid, LockTupleMode mode, LockWaitPolicy wait_policy, bool *have_tuple_lock)
Definition: heapam.c:5303
static int heap_multi_insert_pages(HeapTuple *heaptuples, int done, int ntuples, Size saveFreeSpace)
Definition: heapam.c:2342
static pg_attribute_always_inline int page_collect_tuples(HeapScanDesc scan, Snapshot snapshot, Page page, Buffer buffer, BlockNumber block, int lines, bool all_visible, bool check_serializable)
Definition: heapam.c:517
static BlockNumber heap_scan_stream_read_next_serial(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: heapam.c:287
static void GetMultiXactIdHintBits(MultiXactId multi, uint16 *new_infomask, uint16 *new_infomask2)
Definition: heapam.c:7472
void heap_finish_speculative(Relation relation, const ItemPointerData *tid)
Definition: heapam.c:6114
void HeapTupleHeaderAdvanceConflictHorizon(HeapTupleHeader tuple, TransactionId *snapshotConflictHorizon)
Definition: heapam.c:7999
bool heap_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: heapam.c:1410
#define LOCKMODE_from_mxstatus(status)
Definition: heapam.c:154
void heap_endscan(TableScanDesc sscan)
Definition: heapam.c:1322
#define FRM_RETURN_IS_XID
Definition: heapam.c:6679
#define TUPLOCK_from_mxstatus(status)
Definition: heapam.c:213
void heap_rescan(TableScanDesc sscan, ScanKey key, bool set_params, bool allow_strat, bool allow_sync, bool allow_pagemode)
Definition: heapam.c:1269
void heap_inplace_unlock(Relation relation, HeapTuple oldtup, Buffer buffer)
Definition: heapam.c:6669
TM_Result heap_update(Relation relation, const ItemPointerData *otid, HeapTuple newtup, CommandId cid, Snapshot crosscheck, bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode, TU_UpdateIndexes *update_indexes)
Definition: heapam.c:3273
static int index_delete_sort_cmp(TM_IndexDelete *deltid1, TM_IndexDelete *deltid2)
Definition: heapam.c:8453
static bool ConditionalMultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, Relation rel, int *remaining, bool logLockFailure)
Definition: heapam.c:7821
bool heap_tuple_needs_eventual_freeze(HeapTupleHeader tuple)
Definition: heapam.c:7836
TM_Result heap_delete(Relation relation, const ItemPointerData *tid, CommandId cid, Snapshot crosscheck, bool wait, TM_FailureData *tmfd, bool changingPart)
Definition: heapam.c:2804
static TransactionId FreezeMultiXactId(MultiXactId multi, uint16 t_infomask, const struct VacuumCutoffs *cutoffs, uint16 *flags, HeapPageFreeze *pagefrz)
Definition: heapam.c:6730
static HeapTuple ExtractReplicaIdentity(Relation relation, HeapTuple tp, bool key_required, bool *copy)
Definition: heapam.c:9167
static pg_noinline BlockNumber heapgettup_initial_block(HeapScanDesc scan, ScanDirection dir)
Definition: heapam.c:703
static TM_Result heap_lock_updated_tuple(Relation rel, HeapTuple tuple, const ItemPointerData *ctid, TransactionId xid, LockTupleMode mode)
Definition: heapam.c:6069
#define LockTupleTuplock(rel, tup, mode)
Definition: heapam.c:162
bool heap_tuple_should_freeze(HeapTupleHeader tuple, const struct VacuumCutoffs *cutoffs, TransactionId *NoFreezePageRelfrozenXid, MultiXactId *NoFreezePageRelminMxid)
Definition: heapam.c:7891
bool heap_freeze_tuple(HeapTupleHeader tuple, TransactionId relfrozenxid, TransactionId relminmxid, TransactionId FreezeLimit, TransactionId MultiXactCutoff)
Definition: heapam.c:7428
void heap_inplace_update_and_unlock(Relation relation, HeapTuple oldtup, HeapTuple tuple, Buffer buffer)
Definition: heapam.c:6516
static BlockNumber heapgettup_advance_block(HeapScanDesc scan, BlockNumber block, ScanDirection dir)
Definition: heapam.c:827
static TransactionId MultiXactIdGetUpdateXid(TransactionId xmax, uint16 t_infomask)
Definition: heapam.c:7553
#define BOTTOMUP_MAX_NBLOCKS
Definition: heapam.c:184
void ReleaseBulkInsertStatePin(BulkInsertState bistate)
Definition: heapam.c:2065
#define FRM_MARK_COMMITTED
Definition: heapam.c:6681
#define FRM_NOOP
Definition: heapam.c:6677
static void index_delete_check_htid(TM_IndexDeleteOp *delstate, Page page, OffsetNumber maxoff, const ItemPointerData *htid, TM_IndexStatus *istatus)
Definition: heapam.c:8084
HeapTuple heap_getnext(TableScanDesc sscan, ScanDirection direction)
Definition: heapam.c:1361
bool heap_hot_search_buffer(ItemPointer tid, Relation relation, Buffer buffer, Snapshot snapshot, HeapTuple heapTuple, bool *all_dead, bool first_call)
Definition: heapam.c:1740
int lockstatus
Definition: heapam.c:125
void heap_freeze_prepared_tuples(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
Definition: heapam.c:7406
bool heap_getnextslot_tidrange(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
Definition: heapam.c:1513
static void MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, Relation rel, const ItemPointerData *ctid, XLTW_Oper oper, int *remaining)
Definition: heapam.c:7799
void heap_set_tidrange(TableScanDesc sscan, ItemPointer mintid, ItemPointer maxtid)
Definition: heapam.c:1440
void heap_abort_speculative(Relation relation, const ItemPointerData *tid)
Definition: heapam.c:6201
static BlockNumber bitmapheap_stream_read_next(ReadStream *pgsr, void *private_data, void *per_buffer_data)
Definition: heapam.c:312
TableScanDesc heap_beginscan(Relation relation, Snapshot snapshot, int nkeys, ScanKey key, ParallelTableScanDesc parallel_scan, uint32 flags)
Definition: heapam.c:1115
static void heapgettup(HeapScanDesc scan, ScanDirection dir, int nkeys, ScanKey key)
Definition: heapam.c:911
static Page heapgettup_continue_page(HeapScanDesc scan, ScanDirection dir, int *linesleft, OffsetNumber *lineoff)
Definition: heapam.c:781
static uint8 compute_infobits(uint16 infomask, uint16 infomask2)
Definition: heapam.c:2759
#define FRM_RETURN_IS_MULTI
Definition: heapam.c:6680
LOCKMODE hwlock
Definition: heapam.c:124
#define FRM_INVALIDATE_XMAX
Definition: heapam.c:6678
static bool heap_attr_equals(TupleDesc tupdesc, int attrnum, Datum value1, Datum value2, bool isnull1, bool isnull2)
Definition: heapam.c:4376
static void index_delete_sort(TM_IndexDeleteOp *delstate)
Definition: heapam.c:8489
void heap_prepare_pagescan(TableScanDesc sscan)
Definition: heapam.c:567
static Bitmapset * HeapDetermineColumnsInfo(Relation relation, Bitmapset *interesting_cols, Bitmapset *external_cols, HeapTuple oldtup, HeapTuple newtup, bool *has_external)
Definition: heapam.c:4427
static const int MultiXactStatusLock[MaxMultiXactStatus+1]
Definition: heapam.c:202
void simple_heap_insert(Relation relation, HeapTuple tup)
Definition: heapam.c:2746
static bool xmax_infomask_changed(uint16 new_infomask, uint16 old_infomask)
Definition: heapam.c:2781
#define UnlockTupleTuplock(rel, tup, mode)
Definition: heapam.c:164
static TM_Result test_lockmode_for_conflict(MultiXactStatus status, TransactionId xid, LockTupleMode mode, HeapTuple tup, bool *needwait)
Definition: heapam.c:5633
bool heap_prepare_freeze_tuple(HeapTupleHeader tuple, const struct VacuumCutoffs *cutoffs, HeapPageFreeze *pagefrz, HeapTupleFreeze *frz, bool *totally_frozen)
Definition: heapam.c:7080
static void AssertHasSnapshotForToast(Relation rel)
Definition: heapam.c:220
void simple_heap_delete(Relation relation, const ItemPointerData *tid)
Definition: heapam.c:3227
static XLogRecPtr log_heap_update(Relation reln, Buffer oldbuf, Buffer newbuf, HeapTuple oldtup, HeapTuple newtup, HeapTuple old_key_tuple, bool all_visible_cleared, bool new_all_visible_cleared)
Definition: heapam.c:8864
TransactionId HeapTupleGetUpdateXid(const HeapTupleHeaderData *tup)
Definition: heapam.c:7605
TransactionId heap_index_delete_tuples(Relation rel, TM_IndexDeleteOp *delstate)
Definition: heapam.c:8144
void heap_multi_insert(Relation relation, TupleTableSlot **slots, int ntuples, CommandId cid, int options, BulkInsertState bistate)
Definition: heapam.c:2374
#define ConditionalLockTupleTuplock(rel, tup, mode, log)
Definition: heapam.c:166
static void initscan(HeapScanDesc scan, ScanKey key, bool keep_startblock)
Definition: heapam.c:352
static int bottomup_nblocksfavorable(IndexDeleteCounts *blockgroups, int nblockgroups, TM_IndexDelete *deltids)
Definition: heapam.c:8585
static void heapgettup_pagemode(HeapScanDesc scan, ScanDirection dir, int nkeys, ScanKey key)
Definition: heapam.c:1021
TM_Result heap_lock_tuple(Relation relation, HeapTuple tuple, CommandId cid, LockTupleMode mode, LockWaitPolicy wait_policy, bool follow_updates, Buffer *buffer, TM_FailureData *tmfd)
Definition: heapam.c:4605
static void UpdateXmaxHintBits(HeapTupleHeader tuple, Buffer buffer, TransactionId xid)
Definition: heapam.c:2014
static bool Do_MultiXactIdWait(MultiXactId multi, MultiXactStatus status, uint16 infomask, bool nowait, Relation rel, const ItemPointerData *ctid, XLTW_Oper oper, int *remaining, bool logLockFailure)
Definition: heapam.c:7721
static int bottomup_sort_and_shrink_cmp(const void *arg1, const void *arg2)
Definition: heapam.c:8628
void heap_get_latest_tid(TableScanDesc sscan, ItemPointer tid)
Definition: heapam.c:1892
void heap_setscanlimits(TableScanDesc sscan, BlockNumber startBlk, BlockNumber numBlks)
Definition: heapam.c:495
void HeapCheckForSerializableConflictOut(bool visible, Relation relation, HeapTuple tuple, Buffer buffer, Snapshot snapshot)
Definition: heapam.c:9271
static Page heapgettup_start_page(HeapScanDesc scan, ScanDirection dir, int *linesleft, OffsetNumber *lineoff)
Definition: heapam.c:750
static MultiXactStatus get_mxact_status_for_lock(LockTupleMode mode, bool is_update)
Definition: heapam.c:4558
void heap_pre_freeze_checks(Buffer buffer, HeapTupleFreeze *tuples, int ntuples)
Definition: heapam.c:7353
BulkInsertState GetBulkInsertState(void)
Definition: heapam.c:2036
void FreeBulkInsertState(BulkInsertState bistate)
Definition: heapam.c:2053
static const struct @15 tupleLockExtraInfo[MaxLockTupleMode+1]
#define HEAP_INSERT_SPECULATIVE
Definition: heapam.h:40
#define HEAP_FREEZE_CHECK_XMAX_ABORTED
Definition: heapam.h:138
struct HeapScanDescData * HeapScanDesc
Definition: heapam.h:102
HTSV_Result
Definition: heapam.h:125
@ HEAPTUPLE_RECENTLY_DEAD
Definition: heapam.h:128
@ HEAPTUPLE_INSERT_IN_PROGRESS
Definition: heapam.h:129
@ HEAPTUPLE_LIVE
Definition: heapam.h:127
@ HEAPTUPLE_DELETE_IN_PROGRESS
Definition: heapam.h:130
@ HEAPTUPLE_DEAD
Definition: heapam.h:126
struct BitmapHeapScanDescData * BitmapHeapScanDesc
Definition: heapam.h:110
#define HEAP_INSERT_FROZEN
Definition: heapam.h:38
static void heap_execute_freeze_tuple(HeapTupleHeader tuple, HeapTupleFreeze *frz)
Definition: heapam.h:475
#define HEAP_FREEZE_CHECK_XMIN_COMMITTED
Definition: heapam.h:137
#define HEAP_INSERT_NO_LOGICAL
Definition: heapam.h:39
#define MaxLockTupleMode
Definition: heapam.h:51
struct BulkInsertStateData * BulkInsertState
Definition: heapam.h:46
const TableAmRoutine * GetHeapamTableAmRoutine(void)
void HeapTupleSetHintBits(HeapTupleHeader tuple, Buffer buffer, uint16 infomask, TransactionId xid)
bool HeapTupleSatisfiesVisibility(HeapTuple htup, Snapshot snapshot, Buffer buffer)
bool HeapTupleIsSurelyDead(HeapTuple htup, GlobalVisState *vistest)
HTSV_Result HeapTupleSatisfiesVacuum(HeapTuple htup, TransactionId OldestXmin, Buffer buffer)
bool HeapTupleHeaderIsOnlyLocked(HeapTupleHeader tuple)
TM_Result HeapTupleSatisfiesUpdate(HeapTuple htup, CommandId curcid, Buffer buffer)
#define XLH_INSERT_ON_TOAST_RELATION
Definition: heapam_xlog.h:76
#define SizeOfHeapMultiInsert
Definition: heapam_xlog.h:188
#define XLOG_HEAP2_MULTI_INSERT
Definition: heapam_xlog.h:64
#define SizeOfHeapUpdate
Definition: heapam_xlog.h:233
#define XLH_INVALID_XVAC
Definition: heapam_xlog.h:348
#define XLH_UPDATE_NEW_ALL_VISIBLE_CLEARED
Definition: heapam_xlog.h:87
#define SizeOfHeapVisible
Definition: heapam_xlog.h:458
#define XLOG_HEAP_HOT_UPDATE
Definition: heapam_xlog.h:37
#define XLOG_HEAP_DELETE
Definition: heapam_xlog.h:34
#define XLH_INSERT_IS_SPECULATIVE
Definition: heapam_xlog.h:74
#define XLH_LOCK_ALL_FROZEN_CLEARED
Definition: heapam_xlog.h:401
#define XLH_DELETE_CONTAINS_OLD_KEY
Definition: heapam_xlog.h:104
#define XLH_UPDATE_CONTAINS_NEW_TUPLE
Definition: heapam_xlog.h:90
#define XLH_INSERT_LAST_IN_MULTI
Definition: heapam_xlog.h:73
#define XLH_INSERT_ALL_FROZEN_SET
Definition: heapam_xlog.h:79
#define XLH_FREEZE_XVAC
Definition: heapam_xlog.h:347
#define XLOG_HEAP_UPDATE
Definition: heapam_xlog.h:35
#define XLHL_XMAX_KEYSHR_LOCK
Definition: heapam_xlog.h:397
#define XLH_DELETE_ALL_VISIBLE_CLEARED
Definition: heapam_xlog.h:102
#define XLH_UPDATE_CONTAINS_OLD_TUPLE
Definition: heapam_xlog.h:88
#define SizeOfHeapNewCid
Definition: heapam_xlog.h:478
#define SizeOfHeapLockUpdated
Definition: heapam_xlog.h:423
#define XLHL_XMAX_IS_MULTI
Definition: heapam_xlog.h:394
#define XLH_INSERT_ALL_VISIBLE_CLEARED
Definition: heapam_xlog.h:72
#define SizeOfHeapHeader
Definition: heapam_xlog.h:157
#define XLH_DELETE_IS_PARTITION_MOVE
Definition: heapam_xlog.h:106
#define MinSizeOfHeapInplace
Definition: heapam_xlog.h:444
#define XLH_UPDATE_OLD_ALL_VISIBLE_CLEARED
Definition: heapam_xlog.h:85
#define XLHL_XMAX_LOCK_ONLY
Definition: heapam_xlog.h:395
#define XLOG_HEAP_INPLACE
Definition: heapam_xlog.h:40
#define XLOG_HEAP2_LOCK_UPDATED
Definition: heapam_xlog.h:65
#define XLH_UPDATE_SUFFIX_FROM_OLD
Definition: heapam_xlog.h:92
#define XLH_UPDATE_PREFIX_FROM_OLD
Definition: heapam_xlog.h:91
#define SizeOfMultiInsertTuple
Definition: heapam_xlog.h:199
#define XLHL_XMAX_EXCL_LOCK
Definition: heapam_xlog.h:396
#define XLOG_HEAP2_NEW_CID
Definition: heapam_xlog.h:66
#define XLH_DELETE_CONTAINS_OLD_TUPLE
Definition: heapam_xlog.h:103
#define XLOG_HEAP_LOCK
Definition: heapam_xlog.h:39
#define XLOG_HEAP_INSERT
Definition: heapam_xlog.h:33
#define SizeOfHeapInsert
Definition: heapam_xlog.h:168
#define SizeOfHeapDelete
Definition: heapam_xlog.h:121
#define XLH_DELETE_IS_SUPER
Definition: heapam_xlog.h:105
#define XLH_UPDATE_CONTAINS_OLD_KEY
Definition: heapam_xlog.h:89
#define XLHL_KEYS_UPDATED
Definition: heapam_xlog.h:398
#define XLOG_HEAP2_VISIBLE
Definition: heapam_xlog.h:63
#define XLH_INSERT_CONTAINS_NEW_TUPLE
Definition: heapam_xlog.h:75
#define XLOG_HEAP_INIT_PAGE
Definition: heapam_xlog.h:47
#define SizeOfHeapConfirm
Definition: heapam_xlog.h:431
#define SizeOfHeapLock
Definition: heapam_xlog.h:412
#define XLOG_HEAP_CONFIRM
Definition: heapam_xlog.h:38
void heap_toast_delete(Relation rel, HeapTuple oldtup, bool is_speculative)
Definition: heaptoast.c:43
HeapTuple heap_toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup, int options)
Definition: heaptoast.c:96
HeapTuple toast_flatten_tuple(HeapTuple tup, TupleDesc tupleDesc)
Definition: heaptoast.c:350
#define TOAST_TUPLE_THRESHOLD
Definition: heaptoast.h:48
HeapTuple heap_form_tuple(TupleDesc tupleDescriptor, const Datum *values, const bool *isnull)
Definition: heaptuple.c:1117
void heap_deform_tuple(HeapTuple tuple, TupleDesc tupleDesc, Datum *values, bool *isnull)
Definition: heaptuple.c:1346
void heap_freetuple(HeapTuple htup)
Definition: heaptuple.c:1435
void RelationPutHeapTuple(Relation relation, Buffer buffer, HeapTuple tuple, bool token)
Definition: hio.c:35
Buffer RelationGetBufferForTuple(Relation relation, Size len, Buffer otherBuffer, int options, BulkInsertState bistate, Buffer *vmbuffer, Buffer *vmbuffer_other, int num_pages)
Definition: hio.c:500
HeapTupleHeaderData * HeapTupleHeader
Definition: htup.h:23
#define HEAP_MOVED_OFF
Definition: htup_details.h:211
#define HEAP_XMAX_SHR_LOCK
Definition: htup_details.h:200
static bool HeapTupleIsHotUpdated(const HeapTupleData *tuple)
Definition: htup_details.h:768
#define HEAP_XMIN_FROZEN
Definition: htup_details.h:206
static Datum heap_getattr(HeapTuple tup, int attnum, TupleDesc tupleDesc, bool *isnull)
Definition: htup_details.h:904
static bool HeapTupleHeaderXminFrozen(const HeapTupleHeaderData *tup)
Definition: htup_details.h:350
#define HeapTupleHeaderGetNatts(tup)
Definition: htup_details.h:577
static void HeapTupleHeaderSetXminFrozen(HeapTupleHeaderData *tup)
Definition: htup_details.h:370
#define SizeofHeapTupleHeader
Definition: htup_details.h:185
#define HEAP_KEYS_UPDATED
Definition: htup_details.h:289
static bool HEAP_XMAX_IS_SHR_LOCKED(uint16 infomask)
Definition: htup_details.h:263
static bool HEAP_XMAX_IS_LOCKED_ONLY(uint16 infomask)
Definition: htup_details.h:226
static bool HeapTupleHeaderXminInvalid(const HeapTupleHeaderData *tup)
Definition: htup_details.h:343
static void HeapTupleClearHotUpdated(const HeapTupleData *tuple)
Definition: htup_details.h:780
static bool HeapTupleHasExternal(const HeapTupleData *tuple)
Definition: htup_details.h:762
static TransactionId HeapTupleHeaderGetXvac(const HeapTupleHeaderData *tup)
Definition: htup_details.h:442
#define HEAP2_XACT_MASK
Definition: htup_details.h:293
static void HeapTupleHeaderSetCmax(HeapTupleHeaderData *tup, CommandId cid, bool iscombo)
Definition: htup_details.h:431
#define HEAP_XMAX_LOCK_ONLY
Definition: htup_details.h:197
static void HeapTupleHeaderClearHotUpdated(HeapTupleHeaderData *tup)
Definition: htup_details.h:549
static void HeapTupleHeaderSetCmin(HeapTupleHeaderData *tup, CommandId cid)
Definition: htup_details.h:422
#define HEAP_XMAX_BITS
Definition: htup_details.h:281
#define HEAP_LOCK_MASK
Definition: htup_details.h:202
static CommandId HeapTupleHeaderGetRawCommandId(const HeapTupleHeaderData *tup)
Definition: htup_details.h:415
static TransactionId HeapTupleHeaderGetRawXmax(const HeapTupleHeaderData *tup)
Definition: htup_details.h:377
static bool HeapTupleHeaderIsHeapOnly(const HeapTupleHeaderData *tup)
Definition: htup_details.h:555
static bool HeapTupleIsHeapOnly(const HeapTupleData *tuple)
Definition: htup_details.h:786
#define HEAP_MOVED
Definition: htup_details.h:213
static void HeapTupleSetHeapOnly(const HeapTupleData *tuple)
Definition: htup_details.h:792
#define HEAP_XMAX_IS_MULTI
Definition: htup_details.h:209
static bool HEAP_XMAX_IS_KEYSHR_LOCKED(uint16 infomask)
Definition: htup_details.h:275
#define HEAP_XMAX_COMMITTED
Definition: htup_details.h:207
static TransactionId HeapTupleHeaderGetXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:324
#define HEAP_COMBOCID
Definition: htup_details.h:195
#define HEAP_XACT_MASK
Definition: htup_details.h:215
static bool HeapTupleHeaderIndicatesMovedPartitions(const HeapTupleHeaderData *tup)
Definition: htup_details.h:480
static void HeapTupleSetHotUpdated(const HeapTupleData *tuple)
Definition: htup_details.h:774
#define HEAP_XMAX_EXCL_LOCK
Definition: htup_details.h:196
static bool HeapTupleHeaderIsHotUpdated(const HeapTupleHeaderData *tup)
Definition: htup_details.h:534
#define HEAP_XMAX_INVALID
Definition: htup_details.h:208
static TransactionId HeapTupleHeaderGetRawXmin(const HeapTupleHeaderData *tup)
Definition: htup_details.h:318
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
static void HeapTupleClearHeapOnly(const HeapTupleData *tuple)
Definition: htup_details.h:798
#define MaxHeapAttributeNumber
Definition: htup_details.h:48
static bool HeapTupleHeaderIsSpeculative(const HeapTupleHeaderData *tup)
Definition: htup_details.h:461
static TransactionId HeapTupleHeaderGetUpdateXid(const HeapTupleHeaderData *tup)
Definition: htup_details.h:397
#define MaxHeapTuplesPerPage
Definition: htup_details.h:624
static bool HEAP_XMAX_IS_EXCL_LOCKED(uint16 infomask)
Definition: htup_details.h:269
static void HeapTupleHeaderSetXmin(HeapTupleHeaderData *tup, TransactionId xid)
Definition: htup_details.h:331
static bool HEAP_LOCKED_UPGRADED(uint16 infomask)
Definition: htup_details.h:251
#define HEAP_UPDATED
Definition: htup_details.h:210
#define HEAP_XMAX_KEYSHR_LOCK
Definition: htup_details.h:194
static void HeapTupleHeaderSetMovedPartitions(HeapTupleHeaderData *tup)
Definition: htup_details.h:486
static void HeapTupleHeaderSetXmax(HeapTupleHeaderData *tup, TransactionId xid)
Definition: htup_details.h:383
static bool HeapTupleHeaderXminCommitted(const HeapTupleHeaderData *tup)
Definition: htup_details.h:337
#define IsParallelWorker()
Definition: parallel.h:60
void index_close(Relation relation, LOCKMODE lockmode)
Definition: indexam.c:177
Relation index_open(Oid relationId, LOCKMODE lockmode)
Definition: indexam.c:133
int remaining
Definition: informix.c:692
#define INJECTION_POINT(name, arg)
void CacheInvalidateHeapTupleInplace(Relation relation, HeapTuple tuple, HeapTuple newtuple)
Definition: inval.c:1588
void AcceptInvalidationMessages(void)
Definition: inval.c:930
int inplaceGetInvalidationMessages(SharedInvalidationMessage **msgs, bool *RelcacheInitFileInval)
Definition: inval.c:1088
void PreInplace_Inval(void)
Definition: inval.c:1250
void AtInplace_Inval(void)
Definition: inval.c:1263
void ForgetInplace_Inval(void)
Definition: inval.c:1286
void CacheInvalidateHeapTuple(Relation relation, HeapTuple tuple, HeapTuple newtuple)
Definition: inval.c:1571
int b
Definition: isn.c:74
int init
Definition: isn.c:79
int j
Definition: isn.c:78
int i
Definition: isn.c:77
#define ItemIdGetLength(itemId)
Definition: itemid.h:59
#define ItemIdIsNormal(itemId)
Definition: itemid.h:99
struct ItemIdData ItemIdData
#define ItemIdGetRedirect(itemId)
Definition: itemid.h:78
#define ItemIdIsUsed(itemId)
Definition: itemid.h:92
#define ItemIdIsRedirected(itemId)
Definition: itemid.h:106
#define ItemIdHasStorage(itemId)
Definition: itemid.h:120
int32 ItemPointerCompare(const ItemPointerData *arg1, const ItemPointerData *arg2)
Definition: itemptr.c:51
bool ItemPointerEquals(const ItemPointerData *pointer1, const ItemPointerData *pointer2)
Definition: itemptr.c:35
static void ItemPointerSet(ItemPointerData *pointer, BlockNumber blockNumber, OffsetNumber offNum)
Definition: itemptr.h:135
static void ItemPointerSetInvalid(ItemPointerData *pointer)
Definition: itemptr.h:184
static void ItemPointerSetOffsetNumber(ItemPointerData *pointer, OffsetNumber offsetNumber)
Definition: itemptr.h:158
static void ItemPointerSetBlockNumber(ItemPointerData *pointer, BlockNumber blockNumber)
Definition: itemptr.h:147
static OffsetNumber ItemPointerGetOffsetNumber(const ItemPointerData *pointer)
Definition: itemptr.h:124
static BlockNumber ItemPointerGetBlockNumber(const ItemPointerData *pointer)
Definition: itemptr.h:103
static BlockNumber ItemPointerGetBlockNumberNoCheck(const ItemPointerData *pointer)
Definition: itemptr.h:93
static void ItemPointerCopy(const ItemPointerData *fromPointer, ItemPointerData *toPointer)
Definition: itemptr.h:172
static bool ItemPointerIsValid(const ItemPointerData *pointer)
Definition: itemptr.h:83
void UnlockTuple(Relation relation, const ItemPointerData *tid, LOCKMODE lockmode)
Definition: lmgr.c:601
bool ConditionalXactLockTableWait(TransactionId xid, bool logLockFailure)
Definition: lmgr.c:739
void LockTuple(Relation relation, const ItemPointerData *tid, LOCKMODE lockmode)
Definition: lmgr.c:562
void XactLockTableWait(TransactionId xid, Relation rel, const ItemPointerData *ctid, XLTW_Oper oper)
Definition: lmgr.c:663
XLTW_Oper
Definition: lmgr.h:25
@ XLTW_None
Definition: lmgr.h:26
@ XLTW_Lock
Definition: lmgr.h:29
@ XLTW_Delete
Definition: lmgr.h:28
@ XLTW_LockUpdated
Definition: lmgr.h:30
@ XLTW_Update
Definition: lmgr.h:27
bool LockHeldByMe(const LOCKTAG *locktag, LOCKMODE lockmode, bool orstronger)
Definition: lock.c:643
bool DoLockModesConflict(LOCKMODE mode1, LOCKMODE mode2)
Definition: lock.c:623
bool log_lock_failures
Definition: lock.c:54
#define SET_LOCKTAG_RELATION(locktag, dboid, reloid)
Definition: lock.h:183
#define SET_LOCKTAG_TUPLE(locktag, dboid, reloid, blocknum, offnum)
Definition: lock.h:219
int LOCKMODE
Definition: lockdefs.h:26
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define ShareRowExclusiveLock
Definition: lockdefs.h:41
#define AccessShareLock
Definition: lockdefs.h:36
#define InplaceUpdateTupleLock
Definition: lockdefs.h:48
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define ExclusiveLock
Definition: lockdefs.h:42
#define RowShareLock
Definition: lockdefs.h:37
LockWaitPolicy
Definition: lockoptions.h:37
@ LockWaitSkip
Definition: lockoptions.h:41
@ LockWaitBlock
Definition: lockoptions.h:39
@ LockWaitError
Definition: lockoptions.h:43
LockTupleMode
Definition: lockoptions.h:50
@ LockTupleExclusive
Definition: lockoptions.h:58
@ LockTupleNoKeyExclusive
Definition: lockoptions.h:56
@ LockTupleShare
Definition: lockoptions.h:54
@ LockTupleKeyShare
Definition: lockoptions.h:52
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
#define IsBootstrapProcessingMode()
Definition: miscadmin.h:477
#define START_CRIT_SECTION()
Definition: miscadmin.h:150
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
#define IsNormalProcessingMode()
Definition: miscadmin.h:479
#define END_CRIT_SECTION()
Definition: miscadmin.h:152
MultiXactId MultiXactIdExpand(MultiXactId multi, TransactionId xid, MultiXactStatus status)
Definition: multixact.c:478
bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3265
bool MultiXactIdPrecedesOrEquals(MultiXactId multi1, MultiXactId multi2)
Definition: multixact.c:3279
bool MultiXactIdIsRunning(MultiXactId multi, bool isLockOnly)
Definition: multixact.c:590
void MultiXactIdSetOldestMember(void)
Definition: multixact.c:664
MultiXactId MultiXactIdCreateFromMembers(int nmembers, MultiXactMember *members)
Definition: multixact.c:806
MultiXactId MultiXactIdCreate(TransactionId xid1, MultiXactStatus status1, TransactionId xid2, MultiXactStatus status2)
Definition: multixact.c:425
int GetMultiXactIdMembers(MultiXactId multi, MultiXactMember **members, bool from_pgupgrade, bool isLockOnly)
Definition: multixact.c:1290
#define MultiXactIdIsValid(multi)
Definition: multixact.h:29
MultiXactStatus
Definition: multixact.h:39
@ MultiXactStatusForShare
Definition: multixact.h:41
@ MultiXactStatusForNoKeyUpdate
Definition: multixact.h:42
@ MultiXactStatusNoKeyUpdate
Definition: multixact.h:45
@ MultiXactStatusUpdate
Definition: multixact.h:47
@ MultiXactStatusForUpdate
Definition: multixact.h:43
@ MultiXactStatusForKeyShare
Definition: multixact.h:40
#define ISUPDATE_from_mxstatus(status)
Definition: multixact.h:53
#define InvalidMultiXactId
Definition: multixact.h:25
#define MaxMultiXactStatus
Definition: multixact.h:50
#define InvalidOffsetNumber
Definition: off.h:26
#define OffsetNumberIsValid(offsetNumber)
Definition: off.h:39
#define OffsetNumberNext(offsetNumber)
Definition: off.h:52
uint16 OffsetNumber
Definition: off.h:24
#define FirstOffsetNumber
Definition: off.h:27
#define OffsetNumberPrev(offsetNumber)
Definition: off.h:54
#define MaxOffsetNumber
Definition: off.h:28
Datum lower(PG_FUNCTION_ARGS)
Definition: oracle_compat.c:49
Datum upper(PG_FUNCTION_ARGS)
Definition: oracle_compat.c:80
Operator oper(ParseState *pstate, List *opname, Oid ltypeId, Oid rtypeId, bool noError, int location)
Definition: parse_oper.c:371
int16 attlen
Definition: pg_attribute.h:59
void * arg
#define ERRCODE_DATA_CORRUPTED
Definition: pg_basebackup.c:42
static uint32 pg_nextpower2_32(uint32 num)
Definition: pg_bitutils.h:189
static PgChecksumMode mode
Definition: pg_checksums.c:56
static const struct exclude_list_item skip[]
Definition: pg_checksums.c:108
FormData_pg_class * Form_pg_class
Definition: pg_class.h:156
FormData_pg_database * Form_pg_database
Definition: pg_database.h:96
static char * buf
Definition: pg_test_fsync.c:72
#define pgstat_count_heap_getnext(rel)
Definition: pgstat.h:695
#define pgstat_count_heap_scan(rel)
Definition: pgstat.h:690
void pgstat_count_heap_update(Relation rel, bool hot, bool newpage)
void pgstat_count_heap_delete(Relation rel)
void pgstat_count_heap_insert(Relation rel, PgStat_Counter n)
#define qsort(a, b, c, d)
Definition: port.h:500
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:252
uint64_t Datum
Definition: postgres.h:70
static Pointer DatumGetPointer(Datum X)
Definition: postgres.h:322
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
void CheckForSerializableConflictIn(Relation relation, const ItemPointerData *tid, BlockNumber blkno)
Definition: predicate.c:4336
void CheckForSerializableConflictOut(Relation relation, TransactionId xid, Snapshot snapshot)
Definition: predicate.c:4023
void PredicateLockRelation(Relation relation, Snapshot snapshot)
Definition: predicate.c:2576
void PredicateLockTID(Relation relation, const ItemPointerData *tid, Snapshot snapshot, TransactionId tuple_xid)
Definition: predicate.c:2621
bool CheckForSerializableConflictOutNeeded(Relation relation, Snapshot snapshot)
Definition: predicate.c:3991
#define DELAY_CHKPT_START
Definition: proc.h:135
GlobalVisState * GlobalVisTestFor(Relation rel)
Definition: procarray.c:4069
bool TransactionIdIsInProgress(TransactionId xid)
Definition: procarray.c:1402
void heap_page_prune_opt(Relation relation, Buffer buffer)
Definition: pruneheap.c:209
void read_stream_reset(ReadStream *stream)
Definition: read_stream.c:1044
Buffer read_stream_next_buffer(ReadStream *stream, void **per_buffer_data)
Definition: read_stream.c:791
ReadStream * read_stream_begin_relation(int flags, BufferAccessStrategy strategy, Relation rel, ForkNumber forknum, ReadStreamBlockNumberCB callback, void *callback_private_data, size_t per_buffer_data_size)
Definition: read_stream.c:737
void read_stream_end(ReadStream *stream)
Definition: read_stream.c:1089
#define READ_STREAM_USE_BATCHING
Definition: read_stream.h:64
BlockNumber(* ReadStreamBlockNumberCB)(ReadStream *stream, void *callback_private_data, void *per_buffer_data)
Definition: read_stream.h:77
#define READ_STREAM_DEFAULT
Definition: read_stream.h:21
#define READ_STREAM_SEQUENTIAL
Definition: read_stream.h:36
#define RelationGetRelid(relation)
Definition: rel.h:515
#define RelationIsLogicallyLogged(relation)
Definition: rel.h:711
#define RelationGetTargetPageFreeSpace(relation, defaultff)
Definition: rel.h:390
#define RelationGetDescr(relation)
Definition: rel.h:541
#define RelationGetNumberOfAttributes(relation)
Definition: rel.h:521
#define RelationGetRelationName(relation)
Definition: rel.h:549
#define RelationIsAccessibleInLogicalDecoding(relation)
Definition: rel.h:694
#define RelationNeedsWAL(relation)
Definition: rel.h:638
#define RelationUsesLocalBuffers(relation)
Definition: rel.h:647
#define HEAP_DEFAULT_FILLFACTOR
Definition: rel.h:361
void RelationDecrementReferenceCount(Relation rel)
Definition: relcache.c:2200
Bitmapset * RelationGetIndexAttrBitmap(Relation relation, IndexAttrBitmapKind attrKind)
Definition: relcache.c:5303
void RelationIncrementReferenceCount(Relation rel)
Definition: relcache.c:2187
@ INDEX_ATTR_BITMAP_KEY
Definition: relcache.h:69
@ INDEX_ATTR_BITMAP_HOT_BLOCKING
Definition: relcache.h:72
@ INDEX_ATTR_BITMAP_SUMMARIZED
Definition: relcache.h:73
@ INDEX_ATTR_BITMAP_IDENTITY_KEY
Definition: relcache.h:71
ForkNumber
Definition: relpath.h:56
@ MAIN_FORKNUM
Definition: relpath.h:58
struct ParallelBlockTableScanDescData * ParallelBlockTableScanDesc
Definition: relscan.h:104
#define ScanDirectionIsForward(direction)
Definition: sdir.h:64
#define ScanDirectionIsBackward(direction)
Definition: sdir.h:50
ScanDirection
Definition: sdir.h:25
@ ForwardScanDirection
Definition: sdir.h:28
ScanKeyData * ScanKey
Definition: skey.h:75
TransactionId RecentXmin
Definition: snapmgr.c:160
void UnregisterSnapshot(Snapshot snapshot)
Definition: snapmgr.c:867
TransactionId TransactionXmin
Definition: snapmgr.c:159
bool HaveRegisteredOrActiveSnapshot(void)
Definition: snapmgr.c:1645
void InvalidateCatalogSnapshot(void)
Definition: snapmgr.c:455
#define IsHistoricMVCCSnapshot(snapshot)
Definition: snapmgr.h:59
#define SnapshotAny
Definition: snapmgr.h:33
#define InitNonVacuumableSnapshot(snapshotdata, vistestp)
Definition: snapmgr.h:50
#define IsMVCCSnapshot(snapshot)
Definition: snapmgr.h:55
#define InvalidSnapshot
Definition: snapshot.h:119
int get_tablespace_maintenance_io_concurrency(Oid spcid)
Definition: spccache.c:229
PGPROC * MyProc
Definition: proc.c:67
BlockNumber last_free
Definition: hio.h:49
BufferAccessStrategy strategy
Definition: hio.h:31
uint32 already_extended_by
Definition: hio.h:50
BlockNumber next_free
Definition: hio.h:48
Buffer current_buf
Definition: hio.h:32
int16 attlen
Definition: tupdesc.h:71
MultiXactId NoFreezePageRelminMxid
Definition: heapam.h:220
TransactionId FreezePageRelfrozenXid
Definition: heapam.h:208
bool freeze_required
Definition: heapam.h:182
MultiXactId FreezePageRelminMxid
Definition: heapam.h:209
TransactionId NoFreezePageRelfrozenXid
Definition: heapam.h:219
BufferAccessStrategy rs_strategy
Definition: heapam.h:73
ScanDirection rs_dir
Definition: heapam.h:88
uint32 rs_ntuples
Definition: heapam.h:99
OffsetNumber rs_coffset
Definition: heapam.h:68
bool rs_inited
Definition: heapam.h:67
Buffer rs_cbuf
Definition: heapam.h:70
ParallelBlockTableScanWorkerData * rs_parallelworkerdata
Definition: heapam.h:95
BlockNumber rs_startblock
Definition: heapam.h:62
HeapTupleData rs_ctup
Definition: heapam.h:75
OffsetNumber rs_vistuples[MaxHeapTuplesPerPage]
Definition: heapam.h:100
BlockNumber rs_numblocks
Definition: heapam.h:63
BlockNumber rs_nblocks
Definition: heapam.h:61
ReadStream * rs_read_stream
Definition: heapam.h:78
uint32 rs_cindex
Definition: heapam.h:98
BlockNumber rs_prefetch_block
Definition: heapam.h:89
BlockNumber rs_cblock
Definition: heapam.h:69
TableScanDescData rs_base
Definition: heapam.h:58
ItemPointerData t_self
Definition: htup.h:65
uint32 t_len
Definition: htup.h:64
HeapTupleHeader t_data
Definition: htup.h:68
Oid t_tableOid
Definition: htup.h:66
TransactionId t_xmin
Definition: htup_details.h:124
uint8 frzflags
Definition: heapam.h:147
uint16 t_infomask2
Definition: heapam.h:145
TransactionId xmax
Definition: heapam.h:144
OffsetNumber offset
Definition: heapam.h:152
uint8 checkflags
Definition: heapam.h:150
uint16 t_infomask
Definition: heapam.h:146
union HeapTupleHeaderData::@49 t_choice
ItemPointerData t_ctid
Definition: htup_details.h:161
HeapTupleFields t_heap
Definition: htup_details.h:157
int16 ifirsttid
Definition: heapam.c:195
int16 npromisingtids
Definition: heapam.c:193
Definition: lock.h:167
LockRelId lockRelId
Definition: rel.h:46
Oid relId
Definition: rel.h:40
Oid dbId
Definition: rel.h:41
TransactionId xid
Definition: multixact.h:59
MultiXactStatus status
Definition: multixact.h:60
char data[BLCKSZ]
Definition: c.h:1121
int delayChkptFlags
Definition: proc.h:257
const struct TableAmRoutine * rd_tableam
Definition: rel.h:189
LockInfoData rd_lockInfo
Definition: rel.h:114
Form_pg_index rd_index
Definition: rel.h:192
RelFileLocator rd_locator
Definition: rel.h:57
Form_pg_class rd_rel
Definition: rel.h:111
bool takenDuringRecovery
Definition: snapshot.h:180
BlockNumber blockno
Definition: tidbitmap.h:63
TransactionId xmax
Definition: tableam.h:150
CommandId cmax
Definition: tableam.h:151
ItemPointerData ctid
Definition: tableam.h:149
TM_IndexStatus * status
Definition: tableam.h:254
int bottomupfreespace
Definition: tableam.h:249
Relation irel
Definition: tableam.h:246
TM_IndexDelete * deltids
Definition: tableam.h:253
BlockNumber iblknum
Definition: tableam.h:247
ItemPointerData tid
Definition: tableam.h:212
bool knowndeletable
Definition: tableam.h:219
bool promising
Definition: tableam.h:222
int16 freespace
Definition: tableam.h:223
OffsetNumber idxoffnum
Definition: tableam.h:218
struct TableScanDescData::@50::@51 tidrange
TBMIterator rs_tbmiterator
Definition: relscan.h:47
Relation rs_rd
Definition: relscan.h:36
ItemPointerData rs_mintid
Definition: relscan.h:55
ItemPointerData rs_maxtid
Definition: relscan.h:56
uint32 rs_flags
Definition: relscan.h:64
struct ScanKeyData * rs_key
Definition: relscan.h:39
struct SnapshotData * rs_snapshot
Definition: relscan.h:37
union TableScanDescData::@50 st
struct ParallelTableScanDescData * rs_parallel
Definition: relscan.h:66
Oid tts_tableOid
Definition: tuptable.h:129
TransactionId FreezeLimit
Definition: vacuum.h:289
TransactionId OldestXmin
Definition: vacuum.h:279
TransactionId relfrozenxid
Definition: vacuum.h:263
MultiXactId relminmxid
Definition: vacuum.h:264
MultiXactId MultiXactCutoff
Definition: vacuum.h:290
MultiXactId OldestMxact
Definition: vacuum.h:280
Definition: c.h:697
OffsetNumber offnum
Definition: heapam_xlog.h:428
TransactionId xmax
Definition: heapam_xlog.h:115
OffsetNumber offnum
Definition: heapam_xlog.h:116
uint8 infobits_set
Definition: heapam_xlog.h:117
uint16 t_infomask
Definition: heapam_xlog.h:153
uint16 t_infomask2
Definition: heapam_xlog.h:152
OffsetNumber offnum
Definition: heapam_xlog.h:436
bool relcacheInitFileInval
Definition: heapam_xlog.h:439
OffsetNumber offnum
Definition: heapam_xlog.h:162
TransactionId xmax
Definition: heapam_xlog.h:417
OffsetNumber offnum
Definition: heapam_xlog.h:418
uint8 infobits_set
Definition: heapam_xlog.h:408
OffsetNumber offnum
Definition: heapam_xlog.h:407
TransactionId xmax
Definition: heapam_xlog.h:406
OffsetNumber offsets[FLEXIBLE_ARRAY_MEMBER]
Definition: heapam_xlog.h:185
CommandId cmin
Definition: heapam_xlog.h:467
CommandId combocid
Definition: heapam_xlog.h:469
ItemPointerData target_tid
Definition: heapam_xlog.h:475
TransactionId top_xid
Definition: heapam_xlog.h:466
CommandId cmax
Definition: heapam_xlog.h:468
RelFileLocator target_locator
Definition: heapam_xlog.h:474
TransactionId new_xmax
Definition: heapam_xlog.h:224
uint8 old_infobits_set
Definition: heapam_xlog.h:222
TransactionId old_xmax
Definition: heapam_xlog.h:220
OffsetNumber old_offnum
Definition: heapam_xlog.h:221
OffsetNumber new_offnum
Definition: heapam_xlog.h:225
TransactionId snapshotConflictHorizon
Definition: heapam_xlog.h:454
TransactionId SubTransGetTopmostTransaction(TransactionId xid)
Definition: subtrans.c:162
void ss_report_location(Relation rel, BlockNumber location)
Definition: syncscan.c:289
BlockNumber ss_get_location(Relation rel, BlockNumber relnblocks)
Definition: syncscan.c:254
#define FirstLowInvalidHeapAttributeNumber
Definition: sysattr.h:27
#define TableOidAttributeNumber
Definition: sysattr.h:26
bool RelationSupportsSysCache(Oid relid)
Definition: syscache.c:762
void table_block_parallelscan_startblock_init(Relation rel, ParallelBlockTableScanWorker pbscanwork, ParallelBlockTableScanDesc pbscan, BlockNumber startblock, BlockNumber numblocks)
Definition: tableam.c:459
BlockNumber table_block_parallelscan_nextpage(Relation rel, ParallelBlockTableScanWorker pbscanwork, ParallelBlockTableScanDesc pbscan)
Definition: tableam.c:554
bool synchronize_seqscans
Definition: tableam.c:50
@ SO_ALLOW_STRAT
Definition: tableam.h:58
@ SO_TYPE_TIDRANGESCAN
Definition: tableam.h:53
@ SO_TEMP_SNAPSHOT
Definition: tableam.h:65
@ SO_ALLOW_PAGEMODE
Definition: tableam.h:62
@ SO_TYPE_SAMPLESCAN
Definition: tableam.h:51
@ SO_ALLOW_SYNC
Definition: tableam.h:60
@ SO_TYPE_SEQSCAN
Definition: tableam.h:49
@ SO_TYPE_BITMAPSCAN
Definition: tableam.h:50
TU_UpdateIndexes
Definition: tableam.h:111
@ TU_Summarizing
Definition: tableam.h:119
@ TU_All
Definition: tableam.h:116
@ TU_None
Definition: tableam.h:113
TM_Result
Definition: tableam.h:73
@ TM_Ok
Definition: tableam.h:78
@ TM_BeingModified
Definition: tableam.h:100
@ TM_Deleted
Definition: tableam.h:93
@ TM_WouldBlock
Definition: tableam.h:103
@ TM_Updated
Definition: tableam.h:90
@ TM_SelfModified
Definition: tableam.h:84
@ TM_Invisible
Definition: tableam.h:81
bool tbm_iterate(TBMIterator *iterator, TBMIterateResult *tbmres)
Definition: tidbitmap.c:1614
bool TransactionIdDidCommit(TransactionId transactionId)
Definition: transam.c:126
bool TransactionIdDidAbort(TransactionId transactionId)
Definition: transam.c:188
static bool TransactionIdFollows(TransactionId id1, TransactionId id2)
Definition: transam.h:297
#define InvalidTransactionId
Definition: transam.h:31
static bool TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:282
static bool TransactionIdFollowsOrEquals(TransactionId id1, TransactionId id2)
Definition: transam.h:312
#define TransactionIdEquals(id1, id2)
Definition: transam.h:43
#define TransactionIdIsValid(xid)
Definition: transam.h:41
#define TransactionIdIsNormal(xid)
Definition: transam.h:42
static bool TransactionIdPrecedes(TransactionId id1, TransactionId id2)
Definition: transam.h:263
static CompactAttribute * TupleDescCompactAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:175
static TupleTableSlot * ExecClearTuple(TupleTableSlot *slot)
Definition: tuptable.h:457
static bool HeapKeyTest(HeapTuple tuple, TupleDesc tupdesc, int nkeys, ScanKey keys)
Definition: valid.h:28
static bool VARATT_IS_EXTERNAL(const void *PTR)
Definition: varatt.h:354
bool visibilitymap_clear(Relation rel, BlockNumber heapBlk, Buffer vmbuf, uint8 flags)
void visibilitymap_pin(Relation rel, BlockNumber heapBlk, Buffer *vmbuf)
uint8 visibilitymap_set_vmbits(BlockNumber heapBlk, Buffer vmBuf, uint8 flags, const RelFileLocator rlocator)
#define VISIBILITYMAP_VALID_BITS
#define VISIBILITYMAP_ALL_FROZEN
#define VISIBILITYMAP_XLOG_CATALOG_REL
#define VISIBILITYMAP_ALL_VISIBLE
TransactionId GetTopTransactionId(void)
Definition: xact.c:427
bool bsysscan
Definition: xact.c:101
TransactionId CheckXidAlive
Definition: xact.c:100
TransactionId GetTopTransactionIdIfAny(void)
Definition: xact.c:442
bool TransactionIdIsCurrentTransactionId(TransactionId xid)
Definition: xact.c:942
bool IsInParallelMode(void)
Definition: xact.c:1090
TransactionId GetCurrentTransactionId(void)
Definition: xact.c:455
CommandId GetCurrentCommandId(bool used)
Definition: xact.c:830
#define IsolationIsSerializable()
Definition: xact.h:53
#define XLOG_INCLUDE_ORIGIN
Definition: xlog.h:154
#define XLogHintBitIsNeeded()
Definition: xlog.h:120
#define XLogStandbyInfoActive()
Definition: xlog.h:123
uint64 XLogRecPtr
Definition: xlogdefs.h:21
XLogRecPtr XLogInsert(RmgrId rmid, uint8 info)
Definition: xloginsert.c:478
void XLogRegisterBufData(uint8 block_id, const void *data, uint32 len)
Definition: xloginsert.c:409
bool XLogCheckBufferNeedsBackup(Buffer buffer)
Definition: xloginsert.c:1049
void XLogRegisterData(const void *data, uint32 len)
Definition: xloginsert.c:368
void XLogSetRecordFlags(uint8 flags)
Definition: xloginsert.c:460
void XLogRegisterBlock(uint8 block_id, RelFileLocator *rlocator, ForkNumber forknum, BlockNumber blknum, const PageData *page, uint8 flags)
Definition: xloginsert.c:313
void XLogRegisterBuffer(uint8 block_id, Buffer buffer, uint8 flags)
Definition: xloginsert.c:245
void XLogBeginInsert(void)
Definition: xloginsert.c:152
#define REGBUF_STANDARD
Definition: xloginsert.h:35
#define REGBUF_NO_IMAGE
Definition: xloginsert.h:33
#define REGBUF_KEEP_DATA
Definition: xloginsert.h:36
#define REGBUF_WILL_INIT
Definition: xloginsert.h:34