PostgreSQL Source Code git master
pathnode.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * pathnode.c
4 * Routines to manipulate pathlists and create path nodes
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/util/pathnode.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include <math.h>
18
19#include "access/htup_details.h"
20#include "executor/nodeSetOp.h"
21#include "foreign/fdwapi.h"
22#include "miscadmin.h"
23#include "nodes/extensible.h"
25#include "optimizer/clauses.h"
26#include "optimizer/cost.h"
27#include "optimizer/optimizer.h"
28#include "optimizer/pathnode.h"
29#include "optimizer/paths.h"
30#include "optimizer/planmain.h"
31#include "optimizer/tlist.h"
32#include "parser/parsetree.h"
33#include "utils/memutils.h"
34#include "utils/selfuncs.h"
35
36typedef enum
37{
38 COSTS_EQUAL, /* path costs are fuzzily equal */
39 COSTS_BETTER1, /* first path is cheaper than second */
40 COSTS_BETTER2, /* second path is cheaper than first */
41 COSTS_DIFFERENT, /* neither path dominates the other on cost */
43
44/*
45 * STD_FUZZ_FACTOR is the normal fuzz factor for compare_path_costs_fuzzily.
46 * XXX is it worth making this user-controllable? It provides a tradeoff
47 * between planner runtime and the accuracy of path cost comparisons.
48 */
49#define STD_FUZZ_FACTOR 1.01
50
51static int append_total_cost_compare(const ListCell *a, const ListCell *b);
52static int append_startup_cost_compare(const ListCell *a, const ListCell *b);
54 List *pathlist,
55 RelOptInfo *child_rel);
57 RelOptInfo *child_rel);
58
59
60/*****************************************************************************
61 * MISC. PATH UTILITIES
62 *****************************************************************************/
63
64/*
65 * compare_path_costs
66 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
67 * or more expensive than path2 for the specified criterion.
68 */
69int
70compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
71{
72 /* Number of disabled nodes, if different, trumps all else. */
73 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
74 {
75 if (path1->disabled_nodes < path2->disabled_nodes)
76 return -1;
77 else
78 return +1;
79 }
80
81 if (criterion == STARTUP_COST)
82 {
83 if (path1->startup_cost < path2->startup_cost)
84 return -1;
85 if (path1->startup_cost > path2->startup_cost)
86 return +1;
87
88 /*
89 * If paths have the same startup cost (not at all unlikely), order
90 * them by total cost.
91 */
92 if (path1->total_cost < path2->total_cost)
93 return -1;
94 if (path1->total_cost > path2->total_cost)
95 return +1;
96 }
97 else
98 {
99 if (path1->total_cost < path2->total_cost)
100 return -1;
101 if (path1->total_cost > path2->total_cost)
102 return +1;
103
104 /*
105 * If paths have the same total cost, order them by startup cost.
106 */
107 if (path1->startup_cost < path2->startup_cost)
108 return -1;
109 if (path1->startup_cost > path2->startup_cost)
110 return +1;
111 }
112 return 0;
113}
114
115/*
116 * compare_fractional_path_costs
117 * Return -1, 0, or +1 according as path1 is cheaper, the same cost,
118 * or more expensive than path2 for fetching the specified fraction
119 * of the total tuples.
120 *
121 * If fraction is <= 0 or > 1, we interpret it as 1, ie, we select the
122 * path with the cheaper total_cost.
123 */
124int
126 double fraction)
127{
128 Cost cost1,
129 cost2;
130
131 /* Number of disabled nodes, if different, trumps all else. */
132 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
133 {
134 if (path1->disabled_nodes < path2->disabled_nodes)
135 return -1;
136 else
137 return +1;
138 }
139
140 if (fraction <= 0.0 || fraction >= 1.0)
141 return compare_path_costs(path1, path2, TOTAL_COST);
142 cost1 = path1->startup_cost +
143 fraction * (path1->total_cost - path1->startup_cost);
144 cost2 = path2->startup_cost +
145 fraction * (path2->total_cost - path2->startup_cost);
146 if (cost1 < cost2)
147 return -1;
148 if (cost1 > cost2)
149 return +1;
150 return 0;
151}
152
153/*
154 * compare_path_costs_fuzzily
155 * Compare the costs of two paths to see if either can be said to
156 * dominate the other.
157 *
158 * We use fuzzy comparisons so that add_path() can avoid keeping both of
159 * a pair of paths that really have insignificantly different cost.
160 *
161 * The fuzz_factor argument must be 1.0 plus delta, where delta is the
162 * fraction of the smaller cost that is considered to be a significant
163 * difference. For example, fuzz_factor = 1.01 makes the fuzziness limit
164 * be 1% of the smaller cost.
165 *
166 * The two paths are said to have "equal" costs if both startup and total
167 * costs are fuzzily the same. Path1 is said to be better than path2 if
168 * it has fuzzily better startup cost and fuzzily no worse total cost,
169 * or if it has fuzzily better total cost and fuzzily no worse startup cost.
170 * Path2 is better than path1 if the reverse holds. Finally, if one path
171 * is fuzzily better than the other on startup cost and fuzzily worse on
172 * total cost, we just say that their costs are "different", since neither
173 * dominates the other across the whole performance spectrum.
174 *
175 * This function also enforces a policy rule that paths for which the relevant
176 * one of parent->consider_startup and parent->consider_param_startup is false
177 * cannot survive comparisons solely on the grounds of good startup cost, so
178 * we never return COSTS_DIFFERENT when that is true for the total-cost loser.
179 * (But if total costs are fuzzily equal, we compare startup costs anyway,
180 * in hopes of eliminating one path or the other.)
181 */
183compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
184{
185#define CONSIDER_PATH_STARTUP_COST(p) \
186 ((p)->param_info == NULL ? (p)->parent->consider_startup : (p)->parent->consider_param_startup)
187
188 /* Number of disabled nodes, if different, trumps all else. */
189 if (unlikely(path1->disabled_nodes != path2->disabled_nodes))
190 {
191 if (path1->disabled_nodes < path2->disabled_nodes)
192 return COSTS_BETTER1;
193 else
194 return COSTS_BETTER2;
195 }
196
197 /*
198 * Check total cost first since it's more likely to be different; many
199 * paths have zero startup cost.
200 */
201 if (path1->total_cost > path2->total_cost * fuzz_factor)
202 {
203 /* path1 fuzzily worse on total cost */
204 if (CONSIDER_PATH_STARTUP_COST(path1) &&
205 path2->startup_cost > path1->startup_cost * fuzz_factor)
206 {
207 /* ... but path2 fuzzily worse on startup, so DIFFERENT */
208 return COSTS_DIFFERENT;
209 }
210 /* else path2 dominates */
211 return COSTS_BETTER2;
212 }
213 if (path2->total_cost > path1->total_cost * fuzz_factor)
214 {
215 /* path2 fuzzily worse on total cost */
216 if (CONSIDER_PATH_STARTUP_COST(path2) &&
217 path1->startup_cost > path2->startup_cost * fuzz_factor)
218 {
219 /* ... but path1 fuzzily worse on startup, so DIFFERENT */
220 return COSTS_DIFFERENT;
221 }
222 /* else path1 dominates */
223 return COSTS_BETTER1;
224 }
225 /* fuzzily the same on total cost ... */
226 if (path1->startup_cost > path2->startup_cost * fuzz_factor)
227 {
228 /* ... but path1 fuzzily worse on startup, so path2 wins */
229 return COSTS_BETTER2;
230 }
231 if (path2->startup_cost > path1->startup_cost * fuzz_factor)
232 {
233 /* ... but path2 fuzzily worse on startup, so path1 wins */
234 return COSTS_BETTER1;
235 }
236 /* fuzzily the same on both costs */
237 return COSTS_EQUAL;
238
239#undef CONSIDER_PATH_STARTUP_COST
240}
241
242/*
243 * set_cheapest
244 * Find the minimum-cost paths from among a relation's paths,
245 * and save them in the rel's cheapest-path fields.
246 *
247 * cheapest_total_path is normally the cheapest-total-cost unparameterized
248 * path; but if there are no unparameterized paths, we assign it to be the
249 * best (cheapest least-parameterized) parameterized path. However, only
250 * unparameterized paths are considered candidates for cheapest_startup_path,
251 * so that will be NULL if there are no unparameterized paths.
252 *
253 * The cheapest_parameterized_paths list collects all parameterized paths
254 * that have survived the add_path() tournament for this relation. (Since
255 * add_path ignores pathkeys for a parameterized path, these will be paths
256 * that have best cost or best row count for their parameterization. We
257 * may also have both a parallel-safe and a non-parallel-safe path in some
258 * cases for the same parameterization in some cases, but this should be
259 * relatively rare since, most typically, all paths for the same relation
260 * will be parallel-safe or none of them will.)
261 *
262 * cheapest_parameterized_paths always includes the cheapest-total
263 * unparameterized path, too, if there is one; the users of that list find
264 * it more convenient if that's included.
265 *
266 * This is normally called only after we've finished constructing the path
267 * list for the rel node.
268 */
269void
271{
272 Path *cheapest_startup_path;
273 Path *cheapest_total_path;
274 Path *best_param_path;
275 List *parameterized_paths;
276 ListCell *p;
277
278 Assert(IsA(parent_rel, RelOptInfo));
279
280 if (parent_rel->pathlist == NIL)
281 elog(ERROR, "could not devise a query plan for the given query");
282
283 cheapest_startup_path = cheapest_total_path = best_param_path = NULL;
284 parameterized_paths = NIL;
285
286 foreach(p, parent_rel->pathlist)
287 {
288 Path *path = (Path *) lfirst(p);
289 int cmp;
290
291 if (path->param_info)
292 {
293 /* Parameterized path, so add it to parameterized_paths */
294 parameterized_paths = lappend(parameterized_paths, path);
295
296 /*
297 * If we have an unparameterized cheapest-total, we no longer care
298 * about finding the best parameterized path, so move on.
299 */
300 if (cheapest_total_path)
301 continue;
302
303 /*
304 * Otherwise, track the best parameterized path, which is the one
305 * with least total cost among those of the minimum
306 * parameterization.
307 */
308 if (best_param_path == NULL)
309 best_param_path = path;
310 else
311 {
313 PATH_REQ_OUTER(best_param_path)))
314 {
315 case BMS_EQUAL:
316 /* keep the cheaper one */
317 if (compare_path_costs(path, best_param_path,
318 TOTAL_COST) < 0)
319 best_param_path = path;
320 break;
321 case BMS_SUBSET1:
322 /* new path is less-parameterized */
323 best_param_path = path;
324 break;
325 case BMS_SUBSET2:
326 /* old path is less-parameterized, keep it */
327 break;
328 case BMS_DIFFERENT:
329
330 /*
331 * This means that neither path has the least possible
332 * parameterization for the rel. We'll sit on the old
333 * path until something better comes along.
334 */
335 break;
336 }
337 }
338 }
339 else
340 {
341 /* Unparameterized path, so consider it for cheapest slots */
342 if (cheapest_total_path == NULL)
343 {
344 cheapest_startup_path = cheapest_total_path = path;
345 continue;
346 }
347
348 /*
349 * If we find two paths of identical costs, try to keep the
350 * better-sorted one. The paths might have unrelated sort
351 * orderings, in which case we can only guess which might be
352 * better to keep, but if one is superior then we definitely
353 * should keep that one.
354 */
355 cmp = compare_path_costs(cheapest_startup_path, path, STARTUP_COST);
356 if (cmp > 0 ||
357 (cmp == 0 &&
358 compare_pathkeys(cheapest_startup_path->pathkeys,
359 path->pathkeys) == PATHKEYS_BETTER2))
360 cheapest_startup_path = path;
361
362 cmp = compare_path_costs(cheapest_total_path, path, TOTAL_COST);
363 if (cmp > 0 ||
364 (cmp == 0 &&
365 compare_pathkeys(cheapest_total_path->pathkeys,
366 path->pathkeys) == PATHKEYS_BETTER2))
367 cheapest_total_path = path;
368 }
369 }
370
371 /* Add cheapest unparameterized path, if any, to parameterized_paths */
372 if (cheapest_total_path)
373 parameterized_paths = lcons(cheapest_total_path, parameterized_paths);
374
375 /*
376 * If there is no unparameterized path, use the best parameterized path as
377 * cheapest_total_path (but not as cheapest_startup_path).
378 */
379 if (cheapest_total_path == NULL)
380 cheapest_total_path = best_param_path;
381 Assert(cheapest_total_path != NULL);
382
383 parent_rel->cheapest_startup_path = cheapest_startup_path;
384 parent_rel->cheapest_total_path = cheapest_total_path;
385 parent_rel->cheapest_parameterized_paths = parameterized_paths;
386}
387
388/*
389 * add_path
390 * Consider a potential implementation path for the specified parent rel,
391 * and add it to the rel's pathlist if it is worthy of consideration.
392 *
393 * A path is worthy if it has a better sort order (better pathkeys) or
394 * cheaper cost (as defined below), or generates fewer rows, than any
395 * existing path that has the same or superset parameterization rels. We
396 * also consider parallel-safe paths more worthy than others.
397 *
398 * Cheaper cost can mean either a cheaper total cost or a cheaper startup
399 * cost; if one path is cheaper in one of these aspects and another is
400 * cheaper in the other, we keep both. However, when some path type is
401 * disabled (e.g. due to enable_seqscan=false), the number of times that
402 * a disabled path type is used is considered to be a higher-order
403 * component of the cost. Hence, if path A uses no disabled path type,
404 * and path B uses 1 or more disabled path types, A is cheaper, no matter
405 * what we estimate for the startup and total costs. The startup and total
406 * cost essentially act as a tiebreak when comparing paths that use equal
407 * numbers of disabled path nodes; but in practice this tiebreak is almost
408 * always used, since normally no path types are disabled.
409 *
410 * In addition to possibly adding new_path, we also remove from the rel's
411 * pathlist any old paths that are dominated by new_path --- that is,
412 * new_path is cheaper, at least as well ordered, generates no more rows,
413 * requires no outer rels not required by the old path, and is no less
414 * parallel-safe.
415 *
416 * In most cases, a path with a superset parameterization will generate
417 * fewer rows (since it has more join clauses to apply), so that those two
418 * figures of merit move in opposite directions; this means that a path of
419 * one parameterization can seldom dominate a path of another. But such
420 * cases do arise, so we make the full set of checks anyway.
421 *
422 * There are two policy decisions embedded in this function, along with
423 * its sibling add_path_precheck. First, we treat all parameterized paths
424 * as having NIL pathkeys, so that they cannot win comparisons on the
425 * basis of sort order. This is to reduce the number of parameterized
426 * paths that are kept; see discussion in src/backend/optimizer/README.
427 *
428 * Second, we only consider cheap startup cost to be interesting if
429 * parent_rel->consider_startup is true for an unparameterized path, or
430 * parent_rel->consider_param_startup is true for a parameterized one.
431 * Again, this allows discarding useless paths sooner.
432 *
433 * The pathlist is kept sorted by disabled_nodes and then by total_cost,
434 * with cheaper paths at the front. Within this routine, that's simply a
435 * speed hack: doing it that way makes it more likely that we will reject
436 * an inferior path after a few comparisons, rather than many comparisons.
437 * However, add_path_precheck relies on this ordering to exit early
438 * when possible.
439 *
440 * NOTE: discarded Path objects are immediately pfree'd to reduce planner
441 * memory consumption. We dare not try to free the substructure of a Path,
442 * since much of it may be shared with other Paths or the query tree itself;
443 * but just recycling discarded Path nodes is a very useful savings in
444 * a large join tree. We can recycle the List nodes of pathlist, too.
445 *
446 * As noted in optimizer/README, deleting a previously-accepted Path is
447 * safe because we know that Paths of this rel cannot yet be referenced
448 * from any other rel, such as a higher-level join. However, in some cases
449 * it is possible that a Path is referenced by another Path for its own
450 * rel; we must not delete such a Path, even if it is dominated by the new
451 * Path. Currently this occurs only for IndexPath objects, which may be
452 * referenced as children of BitmapHeapPaths as well as being paths in
453 * their own right. Hence, we don't pfree IndexPaths when rejecting them.
454 *
455 * 'parent_rel' is the relation entry to which the path corresponds.
456 * 'new_path' is a potential path for parent_rel.
457 *
458 * Returns nothing, but modifies parent_rel->pathlist.
459 */
460void
461add_path(RelOptInfo *parent_rel, Path *new_path)
462{
463 bool accept_new = true; /* unless we find a superior old path */
464 int insert_at = 0; /* where to insert new item */
465 List *new_path_pathkeys;
466 ListCell *p1;
467
468 /*
469 * This is a convenient place to check for query cancel --- no part of the
470 * planner goes very long without calling add_path().
471 */
473
474 /* Pretend parameterized paths have no pathkeys, per comment above */
475 new_path_pathkeys = new_path->param_info ? NIL : new_path->pathkeys;
476
477 /*
478 * Loop to check proposed new path against old paths. Note it is possible
479 * for more than one old path to be tossed out because new_path dominates
480 * it.
481 */
482 foreach(p1, parent_rel->pathlist)
483 {
484 Path *old_path = (Path *) lfirst(p1);
485 bool remove_old = false; /* unless new proves superior */
486 PathCostComparison costcmp;
487 PathKeysComparison keyscmp;
488 BMS_Comparison outercmp;
489
490 /*
491 * Do a fuzzy cost comparison with standard fuzziness limit.
492 */
493 costcmp = compare_path_costs_fuzzily(new_path, old_path,
495
496 /*
497 * If the two paths compare differently for startup and total cost,
498 * then we want to keep both, and we can skip comparing pathkeys and
499 * required_outer rels. If they compare the same, proceed with the
500 * other comparisons. Row count is checked last. (We make the tests
501 * in this order because the cost comparison is most likely to turn
502 * out "different", and the pathkeys comparison next most likely. As
503 * explained above, row count very seldom makes a difference, so even
504 * though it's cheap to compare there's not much point in checking it
505 * earlier.)
506 */
507 if (costcmp != COSTS_DIFFERENT)
508 {
509 /* Similarly check to see if either dominates on pathkeys */
510 List *old_path_pathkeys;
511
512 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
513 keyscmp = compare_pathkeys(new_path_pathkeys,
514 old_path_pathkeys);
515 if (keyscmp != PATHKEYS_DIFFERENT)
516 {
517 switch (costcmp)
518 {
519 case COSTS_EQUAL:
520 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
521 PATH_REQ_OUTER(old_path));
522 if (keyscmp == PATHKEYS_BETTER1)
523 {
524 if ((outercmp == BMS_EQUAL ||
525 outercmp == BMS_SUBSET1) &&
526 new_path->rows <= old_path->rows &&
527 new_path->parallel_safe >= old_path->parallel_safe)
528 remove_old = true; /* new dominates old */
529 }
530 else if (keyscmp == PATHKEYS_BETTER2)
531 {
532 if ((outercmp == BMS_EQUAL ||
533 outercmp == BMS_SUBSET2) &&
534 new_path->rows >= old_path->rows &&
535 new_path->parallel_safe <= old_path->parallel_safe)
536 accept_new = false; /* old dominates new */
537 }
538 else /* keyscmp == PATHKEYS_EQUAL */
539 {
540 if (outercmp == BMS_EQUAL)
541 {
542 /*
543 * Same pathkeys and outer rels, and fuzzily
544 * the same cost, so keep just one; to decide
545 * which, first check parallel-safety, then
546 * rows, then do a fuzzy cost comparison with
547 * very small fuzz limit. (We used to do an
548 * exact cost comparison, but that results in
549 * annoying platform-specific plan variations
550 * due to roundoff in the cost estimates.) If
551 * things are still tied, arbitrarily keep
552 * only the old path. Notice that we will
553 * keep only the old path even if the
554 * less-fuzzy comparison decides the startup
555 * and total costs compare differently.
556 */
557 if (new_path->parallel_safe >
558 old_path->parallel_safe)
559 remove_old = true; /* new dominates old */
560 else if (new_path->parallel_safe <
561 old_path->parallel_safe)
562 accept_new = false; /* old dominates new */
563 else if (new_path->rows < old_path->rows)
564 remove_old = true; /* new dominates old */
565 else if (new_path->rows > old_path->rows)
566 accept_new = false; /* old dominates new */
567 else if (compare_path_costs_fuzzily(new_path,
568 old_path,
569 1.0000000001) == COSTS_BETTER1)
570 remove_old = true; /* new dominates old */
571 else
572 accept_new = false; /* old equals or
573 * dominates new */
574 }
575 else if (outercmp == BMS_SUBSET1 &&
576 new_path->rows <= old_path->rows &&
577 new_path->parallel_safe >= old_path->parallel_safe)
578 remove_old = true; /* new dominates old */
579 else if (outercmp == BMS_SUBSET2 &&
580 new_path->rows >= old_path->rows &&
581 new_path->parallel_safe <= old_path->parallel_safe)
582 accept_new = false; /* old dominates new */
583 /* else different parameterizations, keep both */
584 }
585 break;
586 case COSTS_BETTER1:
587 if (keyscmp != PATHKEYS_BETTER2)
588 {
589 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
590 PATH_REQ_OUTER(old_path));
591 if ((outercmp == BMS_EQUAL ||
592 outercmp == BMS_SUBSET1) &&
593 new_path->rows <= old_path->rows &&
594 new_path->parallel_safe >= old_path->parallel_safe)
595 remove_old = true; /* new dominates old */
596 }
597 break;
598 case COSTS_BETTER2:
599 if (keyscmp != PATHKEYS_BETTER1)
600 {
601 outercmp = bms_subset_compare(PATH_REQ_OUTER(new_path),
602 PATH_REQ_OUTER(old_path));
603 if ((outercmp == BMS_EQUAL ||
604 outercmp == BMS_SUBSET2) &&
605 new_path->rows >= old_path->rows &&
606 new_path->parallel_safe <= old_path->parallel_safe)
607 accept_new = false; /* old dominates new */
608 }
609 break;
610 case COSTS_DIFFERENT:
611
612 /*
613 * can't get here, but keep this case to keep compiler
614 * quiet
615 */
616 break;
617 }
618 }
619 }
620
621 /*
622 * Remove current element from pathlist if dominated by new.
623 */
624 if (remove_old)
625 {
626 parent_rel->pathlist = foreach_delete_current(parent_rel->pathlist,
627 p1);
628
629 /*
630 * Delete the data pointed-to by the deleted cell, if possible
631 */
632 if (!IsA(old_path, IndexPath))
633 pfree(old_path);
634 }
635 else
636 {
637 /*
638 * new belongs after this old path if it has more disabled nodes
639 * or if it has the same number of nodes but a greater total cost
640 */
641 if (new_path->disabled_nodes > old_path->disabled_nodes ||
642 (new_path->disabled_nodes == old_path->disabled_nodes &&
643 new_path->total_cost >= old_path->total_cost))
644 insert_at = foreach_current_index(p1) + 1;
645 }
646
647 /*
648 * If we found an old path that dominates new_path, we can quit
649 * scanning the pathlist; we will not add new_path, and we assume
650 * new_path cannot dominate any other elements of the pathlist.
651 */
652 if (!accept_new)
653 break;
654 }
655
656 if (accept_new)
657 {
658 /* Accept the new path: insert it at proper place in pathlist */
659 parent_rel->pathlist =
660 list_insert_nth(parent_rel->pathlist, insert_at, new_path);
661 }
662 else
663 {
664 /* Reject and recycle the new path */
665 if (!IsA(new_path, IndexPath))
666 pfree(new_path);
667 }
668}
669
670/*
671 * add_path_precheck
672 * Check whether a proposed new path could possibly get accepted.
673 * We assume we know the path's pathkeys and parameterization accurately,
674 * and have lower bounds for its costs.
675 *
676 * Note that we do not know the path's rowcount, since getting an estimate for
677 * that is too expensive to do before prechecking. We assume here that paths
678 * of a superset parameterization will generate fewer rows; if that holds,
679 * then paths with different parameterizations cannot dominate each other
680 * and so we can simply ignore existing paths of another parameterization.
681 * (In the infrequent cases where that rule of thumb fails, add_path will
682 * get rid of the inferior path.)
683 *
684 * At the time this is called, we haven't actually built a Path structure,
685 * so the required information has to be passed piecemeal.
686 */
687bool
688add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
689 Cost startup_cost, Cost total_cost,
690 List *pathkeys, Relids required_outer)
691{
692 List *new_path_pathkeys;
693 bool consider_startup;
694 ListCell *p1;
695
696 /* Pretend parameterized paths have no pathkeys, per add_path policy */
697 new_path_pathkeys = required_outer ? NIL : pathkeys;
698
699 /* Decide whether new path's startup cost is interesting */
700 consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
701
702 foreach(p1, parent_rel->pathlist)
703 {
704 Path *old_path = (Path *) lfirst(p1);
705 PathKeysComparison keyscmp;
706
707 /*
708 * Since the pathlist is sorted by disabled_nodes and then by
709 * total_cost, we can stop looking once we reach a path with more
710 * disabled nodes, or the same number of disabled nodes plus a
711 * total_cost larger than the new path's.
712 */
713 if (unlikely(old_path->disabled_nodes != disabled_nodes))
714 {
715 if (disabled_nodes < old_path->disabled_nodes)
716 break;
717 }
718 else if (total_cost <= old_path->total_cost * STD_FUZZ_FACTOR)
719 break;
720
721 /*
722 * We are looking for an old_path with the same parameterization (and
723 * by assumption the same rowcount) that dominates the new path on
724 * pathkeys as well as both cost metrics. If we find one, we can
725 * reject the new path.
726 *
727 * Cost comparisons here should match compare_path_costs_fuzzily.
728 */
729 /* new path can win on startup cost only if consider_startup */
730 if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
731 !consider_startup)
732 {
733 /* new path loses on cost, so check pathkeys... */
734 List *old_path_pathkeys;
735
736 old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
737 keyscmp = compare_pathkeys(new_path_pathkeys,
738 old_path_pathkeys);
739 if (keyscmp == PATHKEYS_EQUAL ||
740 keyscmp == PATHKEYS_BETTER2)
741 {
742 /* new path does not win on pathkeys... */
743 if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
744 {
745 /* Found an old path that dominates the new one */
746 return false;
747 }
748 }
749 }
750 }
751
752 return true;
753}
754
755/*
756 * add_partial_path
757 * Like add_path, our goal here is to consider whether a path is worthy
758 * of being kept around, but the considerations here are a bit different.
759 * A partial path is one which can be executed in any number of workers in
760 * parallel such that each worker will generate a subset of the path's
761 * overall result.
762 *
763 * As in add_path, the partial_pathlist is kept sorted with the cheapest
764 * total path in front. This is depended on by multiple places, which
765 * just take the front entry as the cheapest path without searching.
766 *
767 * We don't generate parameterized partial paths for several reasons. Most
768 * importantly, they're not safe to execute, because there's nothing to
769 * make sure that a parallel scan within the parameterized portion of the
770 * plan is running with the same value in every worker at the same time.
771 * Fortunately, it seems unlikely to be worthwhile anyway, because having
772 * each worker scan the entire outer relation and a subset of the inner
773 * relation will generally be a terrible plan. The inner (parameterized)
774 * side of the plan will be small anyway. There could be rare cases where
775 * this wins big - e.g. if join order constraints put a 1-row relation on
776 * the outer side of the topmost join with a parameterized plan on the inner
777 * side - but we'll have to be content not to handle such cases until
778 * somebody builds an executor infrastructure that can cope with them.
779 *
780 * Because we don't consider parameterized paths here, we also don't
781 * need to consider the row counts as a measure of quality: every path will
782 * produce the same number of rows. Neither do we need to consider startup
783 * costs: parallelism is only used for plans that will be run to completion.
784 * Therefore, this routine is much simpler than add_path: it needs to
785 * consider only disabled nodes, pathkeys and total cost.
786 *
787 * As with add_path, we pfree paths that are found to be dominated by
788 * another partial path; this requires that there be no other references to
789 * such paths yet. Hence, GatherPaths must not be created for a rel until
790 * we're done creating all partial paths for it. Unlike add_path, we don't
791 * take an exception for IndexPaths as partial index paths won't be
792 * referenced by partial BitmapHeapPaths.
793 */
794void
795add_partial_path(RelOptInfo *parent_rel, Path *new_path)
796{
797 bool accept_new = true; /* unless we find a superior old path */
798 int insert_at = 0; /* where to insert new item */
799 ListCell *p1;
800
801 /* Check for query cancel. */
803
804 /* Path to be added must be parallel safe. */
805 Assert(new_path->parallel_safe);
806
807 /* Relation should be OK for parallelism, too. */
808 Assert(parent_rel->consider_parallel);
809
810 /*
811 * As in add_path, throw out any paths which are dominated by the new
812 * path, but throw out the new path if some existing path dominates it.
813 */
814 foreach(p1, parent_rel->partial_pathlist)
815 {
816 Path *old_path = (Path *) lfirst(p1);
817 bool remove_old = false; /* unless new proves superior */
818 PathKeysComparison keyscmp;
819
820 /* Compare pathkeys. */
821 keyscmp = compare_pathkeys(new_path->pathkeys, old_path->pathkeys);
822
823 /* Unless pathkeys are incompatible, keep just one of the two paths. */
824 if (keyscmp != PATHKEYS_DIFFERENT)
825 {
826 if (unlikely(new_path->disabled_nodes != old_path->disabled_nodes))
827 {
828 if (new_path->disabled_nodes > old_path->disabled_nodes)
829 accept_new = false;
830 else
831 remove_old = true;
832 }
833 else if (new_path->total_cost > old_path->total_cost
835 {
836 /* New path costs more; keep it only if pathkeys are better. */
837 if (keyscmp != PATHKEYS_BETTER1)
838 accept_new = false;
839 }
840 else if (old_path->total_cost > new_path->total_cost
842 {
843 /* Old path costs more; keep it only if pathkeys are better. */
844 if (keyscmp != PATHKEYS_BETTER2)
845 remove_old = true;
846 }
847 else if (keyscmp == PATHKEYS_BETTER1)
848 {
849 /* Costs are about the same, new path has better pathkeys. */
850 remove_old = true;
851 }
852 else if (keyscmp == PATHKEYS_BETTER2)
853 {
854 /* Costs are about the same, old path has better pathkeys. */
855 accept_new = false;
856 }
857 else if (old_path->total_cost > new_path->total_cost * 1.0000000001)
858 {
859 /* Pathkeys are the same, and the old path costs more. */
860 remove_old = true;
861 }
862 else
863 {
864 /*
865 * Pathkeys are the same, and new path isn't materially
866 * cheaper.
867 */
868 accept_new = false;
869 }
870 }
871
872 /*
873 * Remove current element from partial_pathlist if dominated by new.
874 */
875 if (remove_old)
876 {
877 parent_rel->partial_pathlist =
879 pfree(old_path);
880 }
881 else
882 {
883 /* new belongs after this old path if it has cost >= old's */
884 if (new_path->total_cost >= old_path->total_cost)
885 insert_at = foreach_current_index(p1) + 1;
886 }
887
888 /*
889 * If we found an old path that dominates new_path, we can quit
890 * scanning the partial_pathlist; we will not add new_path, and we
891 * assume new_path cannot dominate any later path.
892 */
893 if (!accept_new)
894 break;
895 }
896
897 if (accept_new)
898 {
899 /* Accept the new path: insert it at proper place */
900 parent_rel->partial_pathlist =
901 list_insert_nth(parent_rel->partial_pathlist, insert_at, new_path);
902 }
903 else
904 {
905 /* Reject and recycle the new path */
906 pfree(new_path);
907 }
908}
909
910/*
911 * add_partial_path_precheck
912 * Check whether a proposed new partial path could possibly get accepted.
913 *
914 * Unlike add_path_precheck, we can ignore startup cost and parameterization,
915 * since they don't matter for partial paths (see add_partial_path). But
916 * we do want to make sure we don't add a partial path if there's already
917 * a complete path that dominates it, since in that case the proposed path
918 * is surely a loser.
919 */
920bool
921add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes,
922 Cost total_cost, List *pathkeys)
923{
924 ListCell *p1;
925
926 /*
927 * Our goal here is twofold. First, we want to find out whether this path
928 * is clearly inferior to some existing partial path. If so, we want to
929 * reject it immediately. Second, we want to find out whether this path
930 * is clearly superior to some existing partial path -- at least, modulo
931 * final cost computations. If so, we definitely want to consider it.
932 *
933 * Unlike add_path(), we always compare pathkeys here. This is because we
934 * expect partial_pathlist to be very short, and getting a definitive
935 * answer at this stage avoids the need to call add_path_precheck.
936 */
937 foreach(p1, parent_rel->partial_pathlist)
938 {
939 Path *old_path = (Path *) lfirst(p1);
940 PathKeysComparison keyscmp;
941
942 keyscmp = compare_pathkeys(pathkeys, old_path->pathkeys);
943 if (keyscmp != PATHKEYS_DIFFERENT)
944 {
945 if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR &&
946 keyscmp != PATHKEYS_BETTER1)
947 return false;
948 if (old_path->total_cost > total_cost * STD_FUZZ_FACTOR &&
949 keyscmp != PATHKEYS_BETTER2)
950 return true;
951 }
952 }
953
954 /*
955 * This path is neither clearly inferior to an existing partial path nor
956 * clearly good enough that it might replace one. Compare it to
957 * non-parallel plans. If it loses even before accounting for the cost of
958 * the Gather node, we should definitely reject it.
959 *
960 * Note that we pass the total_cost to add_path_precheck twice. This is
961 * because it's never advantageous to consider the startup cost of a
962 * partial path; the resulting plans, if run in parallel, will be run to
963 * completion.
964 */
965 if (!add_path_precheck(parent_rel, disabled_nodes, total_cost, total_cost,
966 pathkeys, NULL))
967 return false;
968
969 return true;
970}
971
972
973/*****************************************************************************
974 * PATH NODE CREATION ROUTINES
975 *****************************************************************************/
976
977/*
978 * create_seqscan_path
979 * Creates a path corresponding to a sequential scan, returning the
980 * pathnode.
981 */
982Path *
984 Relids required_outer, int parallel_workers)
985{
986 Path *pathnode = makeNode(Path);
987
988 pathnode->pathtype = T_SeqScan;
989 pathnode->parent = rel;
990 pathnode->pathtarget = rel->reltarget;
991 pathnode->param_info = get_baserel_parampathinfo(root, rel,
992 required_outer);
993 pathnode->parallel_aware = (parallel_workers > 0);
994 pathnode->parallel_safe = rel->consider_parallel;
995 pathnode->parallel_workers = parallel_workers;
996 pathnode->pathkeys = NIL; /* seqscan has unordered result */
997
998 cost_seqscan(pathnode, root, rel, pathnode->param_info);
999
1000 return pathnode;
1001}
1002
1003/*
1004 * create_samplescan_path
1005 * Creates a path node for a sampled table scan.
1006 */
1007Path *
1009{
1010 Path *pathnode = makeNode(Path);
1011
1012 pathnode->pathtype = T_SampleScan;
1013 pathnode->parent = rel;
1014 pathnode->pathtarget = rel->reltarget;
1015 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1016 required_outer);
1017 pathnode->parallel_aware = false;
1018 pathnode->parallel_safe = rel->consider_parallel;
1019 pathnode->parallel_workers = 0;
1020 pathnode->pathkeys = NIL; /* samplescan has unordered result */
1021
1022 cost_samplescan(pathnode, root, rel, pathnode->param_info);
1023
1024 return pathnode;
1025}
1026
1027/*
1028 * create_index_path
1029 * Creates a path node for an index scan.
1030 *
1031 * 'index' is a usable index.
1032 * 'indexclauses' is a list of IndexClause nodes representing clauses
1033 * to be enforced as qual conditions in the scan.
1034 * 'indexorderbys' is a list of bare expressions (no RestrictInfos)
1035 * to be used as index ordering operators in the scan.
1036 * 'indexorderbycols' is an integer list of index column numbers (zero based)
1037 * the ordering operators can be used with.
1038 * 'pathkeys' describes the ordering of the path.
1039 * 'indexscandir' is either ForwardScanDirection or BackwardScanDirection.
1040 * 'indexonly' is true if an index-only scan is wanted.
1041 * 'required_outer' is the set of outer relids for a parameterized path.
1042 * 'loop_count' is the number of repetitions of the indexscan to factor into
1043 * estimates of caching behavior.
1044 * 'partial_path' is true if constructing a parallel index scan path.
1045 *
1046 * Returns the new path node.
1047 */
1048IndexPath *
1051 List *indexclauses,
1052 List *indexorderbys,
1053 List *indexorderbycols,
1054 List *pathkeys,
1055 ScanDirection indexscandir,
1056 bool indexonly,
1057 Relids required_outer,
1058 double loop_count,
1059 bool partial_path)
1060{
1061 IndexPath *pathnode = makeNode(IndexPath);
1062 RelOptInfo *rel = index->rel;
1063
1064 pathnode->path.pathtype = indexonly ? T_IndexOnlyScan : T_IndexScan;
1065 pathnode->path.parent = rel;
1066 pathnode->path.pathtarget = rel->reltarget;
1067 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1068 required_outer);
1069 pathnode->path.parallel_aware = false;
1070 pathnode->path.parallel_safe = rel->consider_parallel;
1071 pathnode->path.parallel_workers = 0;
1072 pathnode->path.pathkeys = pathkeys;
1073
1074 pathnode->indexinfo = index;
1075 pathnode->indexclauses = indexclauses;
1076 pathnode->indexorderbys = indexorderbys;
1077 pathnode->indexorderbycols = indexorderbycols;
1078 pathnode->indexscandir = indexscandir;
1079
1080 cost_index(pathnode, root, loop_count, partial_path);
1081
1082 return pathnode;
1083}
1084
1085/*
1086 * create_bitmap_heap_path
1087 * Creates a path node for a bitmap scan.
1088 *
1089 * 'bitmapqual' is a tree of IndexPath, BitmapAndPath, and BitmapOrPath nodes.
1090 * 'required_outer' is the set of outer relids for a parameterized path.
1091 * 'loop_count' is the number of repetitions of the indexscan to factor into
1092 * estimates of caching behavior.
1093 *
1094 * loop_count should match the value used when creating the component
1095 * IndexPaths.
1096 */
1099 RelOptInfo *rel,
1100 Path *bitmapqual,
1101 Relids required_outer,
1102 double loop_count,
1103 int parallel_degree)
1104{
1106
1107 pathnode->path.pathtype = T_BitmapHeapScan;
1108 pathnode->path.parent = rel;
1109 pathnode->path.pathtarget = rel->reltarget;
1110 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1111 required_outer);
1112 pathnode->path.parallel_aware = (parallel_degree > 0);
1113 pathnode->path.parallel_safe = rel->consider_parallel;
1114 pathnode->path.parallel_workers = parallel_degree;
1115 pathnode->path.pathkeys = NIL; /* always unordered */
1116
1117 pathnode->bitmapqual = bitmapqual;
1118
1119 cost_bitmap_heap_scan(&pathnode->path, root, rel,
1120 pathnode->path.param_info,
1121 bitmapqual, loop_count);
1122
1123 return pathnode;
1124}
1125
1126/*
1127 * create_bitmap_and_path
1128 * Creates a path node representing a BitmapAnd.
1129 */
1132 RelOptInfo *rel,
1133 List *bitmapquals)
1134{
1136 Relids required_outer = NULL;
1137 ListCell *lc;
1138
1139 pathnode->path.pathtype = T_BitmapAnd;
1140 pathnode->path.parent = rel;
1141 pathnode->path.pathtarget = rel->reltarget;
1142
1143 /*
1144 * Identify the required outer rels as the union of what the child paths
1145 * depend on. (Alternatively, we could insist that the caller pass this
1146 * in, but it's more convenient and reliable to compute it here.)
1147 */
1148 foreach(lc, bitmapquals)
1149 {
1150 Path *bitmapqual = (Path *) lfirst(lc);
1151
1152 required_outer = bms_add_members(required_outer,
1153 PATH_REQ_OUTER(bitmapqual));
1154 }
1155 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1156 required_outer);
1157
1158 /*
1159 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1160 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1161 * set the flag for this path based only on the relation-level flag,
1162 * without actually iterating over the list of children.
1163 */
1164 pathnode->path.parallel_aware = false;
1165 pathnode->path.parallel_safe = rel->consider_parallel;
1166 pathnode->path.parallel_workers = 0;
1167
1168 pathnode->path.pathkeys = NIL; /* always unordered */
1169
1170 pathnode->bitmapquals = bitmapquals;
1171
1172 /* this sets bitmapselectivity as well as the regular cost fields: */
1173 cost_bitmap_and_node(pathnode, root);
1174
1175 return pathnode;
1176}
1177
1178/*
1179 * create_bitmap_or_path
1180 * Creates a path node representing a BitmapOr.
1181 */
1184 RelOptInfo *rel,
1185 List *bitmapquals)
1186{
1187 BitmapOrPath *pathnode = makeNode(BitmapOrPath);
1188 Relids required_outer = NULL;
1189 ListCell *lc;
1190
1191 pathnode->path.pathtype = T_BitmapOr;
1192 pathnode->path.parent = rel;
1193 pathnode->path.pathtarget = rel->reltarget;
1194
1195 /*
1196 * Identify the required outer rels as the union of what the child paths
1197 * depend on. (Alternatively, we could insist that the caller pass this
1198 * in, but it's more convenient and reliable to compute it here.)
1199 */
1200 foreach(lc, bitmapquals)
1201 {
1202 Path *bitmapqual = (Path *) lfirst(lc);
1203
1204 required_outer = bms_add_members(required_outer,
1205 PATH_REQ_OUTER(bitmapqual));
1206 }
1207 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1208 required_outer);
1209
1210 /*
1211 * Currently, a BitmapHeapPath, BitmapAndPath, or BitmapOrPath will be
1212 * parallel-safe if and only if rel->consider_parallel is set. So, we can
1213 * set the flag for this path based only on the relation-level flag,
1214 * without actually iterating over the list of children.
1215 */
1216 pathnode->path.parallel_aware = false;
1217 pathnode->path.parallel_safe = rel->consider_parallel;
1218 pathnode->path.parallel_workers = 0;
1219
1220 pathnode->path.pathkeys = NIL; /* always unordered */
1221
1222 pathnode->bitmapquals = bitmapquals;
1223
1224 /* this sets bitmapselectivity as well as the regular cost fields: */
1225 cost_bitmap_or_node(pathnode, root);
1226
1227 return pathnode;
1228}
1229
1230/*
1231 * create_tidscan_path
1232 * Creates a path corresponding to a scan by TID, returning the pathnode.
1233 */
1234TidPath *
1236 Relids required_outer)
1237{
1238 TidPath *pathnode = makeNode(TidPath);
1239
1240 pathnode->path.pathtype = T_TidScan;
1241 pathnode->path.parent = rel;
1242 pathnode->path.pathtarget = rel->reltarget;
1243 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1244 required_outer);
1245 pathnode->path.parallel_aware = false;
1246 pathnode->path.parallel_safe = rel->consider_parallel;
1247 pathnode->path.parallel_workers = 0;
1248 pathnode->path.pathkeys = NIL; /* always unordered */
1249
1250 pathnode->tidquals = tidquals;
1251
1252 cost_tidscan(&pathnode->path, root, rel, tidquals,
1253 pathnode->path.param_info);
1254
1255 return pathnode;
1256}
1257
1258/*
1259 * create_tidrangescan_path
1260 * Creates a path corresponding to a scan by a range of TIDs, returning
1261 * the pathnode.
1262 */
1265 List *tidrangequals, Relids required_outer,
1266 int parallel_workers)
1267{
1268 TidRangePath *pathnode = makeNode(TidRangePath);
1269
1270 pathnode->path.pathtype = T_TidRangeScan;
1271 pathnode->path.parent = rel;
1272 pathnode->path.pathtarget = rel->reltarget;
1273 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1274 required_outer);
1275 pathnode->path.parallel_aware = (parallel_workers > 0);
1276 pathnode->path.parallel_safe = rel->consider_parallel;
1277 pathnode->path.parallel_workers = parallel_workers;
1278 pathnode->path.pathkeys = NIL; /* always unordered */
1279
1280 pathnode->tidrangequals = tidrangequals;
1281
1282 cost_tidrangescan(&pathnode->path, root, rel, tidrangequals,
1283 pathnode->path.param_info);
1284
1285 return pathnode;
1286}
1287
1288/*
1289 * create_append_path
1290 * Creates a path corresponding to an Append plan, returning the
1291 * pathnode.
1292 *
1293 * Note that we must handle subpaths = NIL, representing a dummy access path.
1294 * Also, there are callers that pass root = NULL.
1295 *
1296 * 'rows', when passed as a non-negative number, will be used to overwrite the
1297 * returned path's row estimate. Otherwise, the row estimate is calculated
1298 * by totalling the row estimates from the 'subpaths' list.
1299 */
1300AppendPath *
1302 RelOptInfo *rel,
1303 List *subpaths, List *partial_subpaths,
1304 List *pathkeys, Relids required_outer,
1305 int parallel_workers, bool parallel_aware,
1306 double rows)
1307{
1308 AppendPath *pathnode = makeNode(AppendPath);
1309 ListCell *l;
1310
1311 Assert(!parallel_aware || parallel_workers > 0);
1312
1313 pathnode->path.pathtype = T_Append;
1314 pathnode->path.parent = rel;
1315 pathnode->path.pathtarget = rel->reltarget;
1316
1317 /*
1318 * If this is for a baserel (not a join or non-leaf partition), we prefer
1319 * to apply get_baserel_parampathinfo to construct a full ParamPathInfo
1320 * for the path. This supports building a Memoize path atop this path,
1321 * and if this is a partitioned table the info may be useful for run-time
1322 * pruning (cf make_partition_pruneinfo()).
1323 *
1324 * However, if we don't have "root" then that won't work and we fall back
1325 * on the simpler get_appendrel_parampathinfo. There's no point in doing
1326 * the more expensive thing for a dummy path, either.
1327 */
1328 if (rel->reloptkind == RELOPT_BASEREL && root && subpaths != NIL)
1329 pathnode->path.param_info = get_baserel_parampathinfo(root,
1330 rel,
1331 required_outer);
1332 else
1333 pathnode->path.param_info = get_appendrel_parampathinfo(rel,
1334 required_outer);
1335
1336 pathnode->path.parallel_aware = parallel_aware;
1337 pathnode->path.parallel_safe = rel->consider_parallel;
1338 pathnode->path.parallel_workers = parallel_workers;
1339 pathnode->path.pathkeys = pathkeys;
1340
1341 /*
1342 * For parallel append, non-partial paths are sorted by descending total
1343 * costs. That way, the total time to finish all non-partial paths is
1344 * minimized. Also, the partial paths are sorted by descending startup
1345 * costs. There may be some paths that require to do startup work by a
1346 * single worker. In such case, it's better for workers to choose the
1347 * expensive ones first, whereas the leader should choose the cheapest
1348 * startup plan.
1349 */
1350 if (pathnode->path.parallel_aware)
1351 {
1352 /*
1353 * We mustn't fiddle with the order of subpaths when the Append has
1354 * pathkeys. The order they're listed in is critical to keeping the
1355 * pathkeys valid.
1356 */
1357 Assert(pathkeys == NIL);
1358
1360 list_sort(partial_subpaths, append_startup_cost_compare);
1361 }
1362 pathnode->first_partial_path = list_length(subpaths);
1363 pathnode->subpaths = list_concat(subpaths, partial_subpaths);
1364
1365 /*
1366 * Apply query-wide LIMIT if known and path is for sole base relation.
1367 * (Handling this at this low level is a bit klugy.)
1368 */
1369 if (root != NULL && bms_equal(rel->relids, root->all_query_rels))
1370 pathnode->limit_tuples = root->limit_tuples;
1371 else
1372 pathnode->limit_tuples = -1.0;
1373
1374 foreach(l, pathnode->subpaths)
1375 {
1376 Path *subpath = (Path *) lfirst(l);
1377
1378 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1379 subpath->parallel_safe;
1380
1381 /* All child paths must have same parameterization */
1382 Assert(bms_equal(PATH_REQ_OUTER(subpath), required_outer));
1383 }
1384
1385 Assert(!parallel_aware || pathnode->path.parallel_safe);
1386
1387 /*
1388 * If there's exactly one child path then the output of the Append is
1389 * necessarily ordered the same as the child's, so we can inherit the
1390 * child's pathkeys if any, overriding whatever the caller might've said.
1391 * Furthermore, if the child's parallel awareness matches the Append's,
1392 * then the Append is a no-op and will be discarded later (in setrefs.c).
1393 * Then we can inherit the child's size and cost too, effectively charging
1394 * zero for the Append. Otherwise, we must do the normal costsize
1395 * calculation.
1396 */
1397 if (list_length(pathnode->subpaths) == 1)
1398 {
1399 Path *child = (Path *) linitial(pathnode->subpaths);
1400
1401 if (child->parallel_aware == parallel_aware)
1402 {
1403 pathnode->path.rows = child->rows;
1404 pathnode->path.startup_cost = child->startup_cost;
1405 pathnode->path.total_cost = child->total_cost;
1406 }
1407 else
1408 cost_append(pathnode, root);
1409 /* Must do this last, else cost_append complains */
1410 pathnode->path.pathkeys = child->pathkeys;
1411 }
1412 else
1413 cost_append(pathnode, root);
1414
1415 /* If the caller provided a row estimate, override the computed value. */
1416 if (rows >= 0)
1417 pathnode->path.rows = rows;
1418
1419 return pathnode;
1420}
1421
1422/*
1423 * append_total_cost_compare
1424 * list_sort comparator for sorting append child paths
1425 * by total_cost descending
1426 *
1427 * For equal total costs, we fall back to comparing startup costs; if those
1428 * are equal too, break ties using bms_compare on the paths' relids.
1429 * (This is to avoid getting unpredictable results from list_sort.)
1430 */
1431static int
1433{
1434 Path *path1 = (Path *) lfirst(a);
1435 Path *path2 = (Path *) lfirst(b);
1436 int cmp;
1437
1438 cmp = compare_path_costs(path1, path2, TOTAL_COST);
1439 if (cmp != 0)
1440 return -cmp;
1441 return bms_compare(path1->parent->relids, path2->parent->relids);
1442}
1443
1444/*
1445 * append_startup_cost_compare
1446 * list_sort comparator for sorting append child paths
1447 * by startup_cost descending
1448 *
1449 * For equal startup costs, we fall back to comparing total costs; if those
1450 * are equal too, break ties using bms_compare on the paths' relids.
1451 * (This is to avoid getting unpredictable results from list_sort.)
1452 */
1453static int
1455{
1456 Path *path1 = (Path *) lfirst(a);
1457 Path *path2 = (Path *) lfirst(b);
1458 int cmp;
1459
1460 cmp = compare_path_costs(path1, path2, STARTUP_COST);
1461 if (cmp != 0)
1462 return -cmp;
1463 return bms_compare(path1->parent->relids, path2->parent->relids);
1464}
1465
1466/*
1467 * create_merge_append_path
1468 * Creates a path corresponding to a MergeAppend plan, returning the
1469 * pathnode.
1470 */
1473 RelOptInfo *rel,
1474 List *subpaths,
1475 List *pathkeys,
1476 Relids required_outer)
1477{
1479 int input_disabled_nodes;
1480 Cost input_startup_cost;
1481 Cost input_total_cost;
1482 ListCell *l;
1483
1484 /*
1485 * We don't currently support parameterized MergeAppend paths, as
1486 * explained in the comments for generate_orderedappend_paths.
1487 */
1488 Assert(bms_is_empty(rel->lateral_relids) && bms_is_empty(required_outer));
1489
1490 pathnode->path.pathtype = T_MergeAppend;
1491 pathnode->path.parent = rel;
1492 pathnode->path.pathtarget = rel->reltarget;
1493 pathnode->path.param_info = NULL;
1494 pathnode->path.parallel_aware = false;
1495 pathnode->path.parallel_safe = rel->consider_parallel;
1496 pathnode->path.parallel_workers = 0;
1497 pathnode->path.pathkeys = pathkeys;
1498 pathnode->subpaths = subpaths;
1499
1500 /*
1501 * Apply query-wide LIMIT if known and path is for sole base relation.
1502 * (Handling this at this low level is a bit klugy.)
1503 */
1504 if (bms_equal(rel->relids, root->all_query_rels))
1505 pathnode->limit_tuples = root->limit_tuples;
1506 else
1507 pathnode->limit_tuples = -1.0;
1508
1509 /*
1510 * Add up the sizes and costs of the input paths.
1511 */
1512 pathnode->path.rows = 0;
1513 input_disabled_nodes = 0;
1514 input_startup_cost = 0;
1515 input_total_cost = 0;
1516 foreach(l, subpaths)
1517 {
1518 Path *subpath = (Path *) lfirst(l);
1519 int presorted_keys;
1520 Path sort_path; /* dummy for result of
1521 * cost_sort/cost_incremental_sort */
1522
1523 /* All child paths should be unparameterized */
1525
1526 pathnode->path.rows += subpath->rows;
1527 pathnode->path.parallel_safe = pathnode->path.parallel_safe &&
1528 subpath->parallel_safe;
1529
1530 if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
1531 &presorted_keys))
1532 {
1533 /*
1534 * We'll need to insert a Sort node, so include costs for that. We
1535 * choose to use incremental sort if it is enabled and there are
1536 * presorted keys; otherwise we use full sort.
1537 *
1538 * We can use the parent's LIMIT if any, since we certainly won't
1539 * pull more than that many tuples from any child.
1540 */
1541 if (enable_incremental_sort && presorted_keys > 0)
1542 {
1543 cost_incremental_sort(&sort_path,
1544 root,
1545 pathkeys,
1546 presorted_keys,
1547 subpath->disabled_nodes,
1548 subpath->startup_cost,
1549 subpath->total_cost,
1550 subpath->rows,
1551 subpath->pathtarget->width,
1552 0.0,
1553 work_mem,
1554 pathnode->limit_tuples);
1555 }
1556 else
1557 {
1558 cost_sort(&sort_path,
1559 root,
1560 pathkeys,
1561 subpath->disabled_nodes,
1562 subpath->total_cost,
1563 subpath->rows,
1564 subpath->pathtarget->width,
1565 0.0,
1566 work_mem,
1567 pathnode->limit_tuples);
1568 }
1569
1570 subpath = &sort_path;
1571 }
1572
1573 input_disabled_nodes += subpath->disabled_nodes;
1574 input_startup_cost += subpath->startup_cost;
1575 input_total_cost += subpath->total_cost;
1576 }
1577
1578 /*
1579 * Now we can compute total costs of the MergeAppend. If there's exactly
1580 * one child path and its parallel awareness matches that of the
1581 * MergeAppend, then the MergeAppend is a no-op and will be discarded
1582 * later (in setrefs.c); otherwise we do the normal cost calculation.
1583 */
1584 if (list_length(subpaths) == 1 &&
1585 ((Path *) linitial(subpaths))->parallel_aware ==
1586 pathnode->path.parallel_aware)
1587 {
1588 pathnode->path.disabled_nodes = input_disabled_nodes;
1589 pathnode->path.startup_cost = input_startup_cost;
1590 pathnode->path.total_cost = input_total_cost;
1591 }
1592 else
1593 cost_merge_append(&pathnode->path, root,
1594 pathkeys, list_length(subpaths),
1595 input_disabled_nodes,
1596 input_startup_cost, input_total_cost,
1597 pathnode->path.rows);
1598
1599 return pathnode;
1600}
1601
1602/*
1603 * create_group_result_path
1604 * Creates a path representing a Result-and-nothing-else plan.
1605 *
1606 * This is only used for degenerate grouping cases, in which we know we
1607 * need to produce one result row, possibly filtered by a HAVING qual.
1608 */
1611 PathTarget *target, List *havingqual)
1612{
1614
1615 pathnode->path.pathtype = T_Result;
1616 pathnode->path.parent = rel;
1617 pathnode->path.pathtarget = target;
1618 pathnode->path.param_info = NULL; /* there are no other rels... */
1619 pathnode->path.parallel_aware = false;
1620 pathnode->path.parallel_safe = rel->consider_parallel;
1621 pathnode->path.parallel_workers = 0;
1622 pathnode->path.pathkeys = NIL;
1623 pathnode->quals = havingqual;
1624
1625 /*
1626 * We can't quite use cost_resultscan() because the quals we want to
1627 * account for are not baserestrict quals of the rel. Might as well just
1628 * hack it here.
1629 */
1630 pathnode->path.rows = 1;
1631 pathnode->path.startup_cost = target->cost.startup;
1632 pathnode->path.total_cost = target->cost.startup +
1633 cpu_tuple_cost + target->cost.per_tuple;
1634
1635 /*
1636 * Add cost of qual, if any --- but we ignore its selectivity, since our
1637 * rowcount estimate should be 1 no matter what the qual is.
1638 */
1639 if (havingqual)
1640 {
1641 QualCost qual_cost;
1642
1643 cost_qual_eval(&qual_cost, havingqual, root);
1644 /* havingqual is evaluated once at startup */
1645 pathnode->path.startup_cost += qual_cost.startup + qual_cost.per_tuple;
1646 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
1647 }
1648
1649 return pathnode;
1650}
1651
1652/*
1653 * create_material_path
1654 * Creates a path corresponding to a Material plan, returning the
1655 * pathnode.
1656 */
1659{
1660 MaterialPath *pathnode = makeNode(MaterialPath);
1661
1662 Assert(subpath->parent == rel);
1663
1664 pathnode->path.pathtype = T_Material;
1665 pathnode->path.parent = rel;
1666 pathnode->path.pathtarget = rel->reltarget;
1667 pathnode->path.param_info = subpath->param_info;
1668 pathnode->path.parallel_aware = false;
1669 pathnode->path.parallel_safe = rel->consider_parallel &&
1670 subpath->parallel_safe;
1671 pathnode->path.parallel_workers = subpath->parallel_workers;
1672 pathnode->path.pathkeys = subpath->pathkeys;
1673
1674 pathnode->subpath = subpath;
1675
1676 cost_material(&pathnode->path,
1677 subpath->disabled_nodes,
1678 subpath->startup_cost,
1679 subpath->total_cost,
1680 subpath->rows,
1681 subpath->pathtarget->width);
1682
1683 return pathnode;
1684}
1685
1686/*
1687 * create_memoize_path
1688 * Creates a path corresponding to a Memoize plan, returning the pathnode.
1689 */
1692 List *param_exprs, List *hash_operators,
1693 bool singlerow, bool binary_mode, Cardinality est_calls)
1694{
1695 MemoizePath *pathnode = makeNode(MemoizePath);
1696
1697 Assert(subpath->parent == rel);
1698
1699 pathnode->path.pathtype = T_Memoize;
1700 pathnode->path.parent = rel;
1701 pathnode->path.pathtarget = rel->reltarget;
1702 pathnode->path.param_info = subpath->param_info;
1703 pathnode->path.parallel_aware = false;
1704 pathnode->path.parallel_safe = rel->consider_parallel &&
1705 subpath->parallel_safe;
1706 pathnode->path.parallel_workers = subpath->parallel_workers;
1707 pathnode->path.pathkeys = subpath->pathkeys;
1708
1709 pathnode->subpath = subpath;
1710 pathnode->hash_operators = hash_operators;
1711 pathnode->param_exprs = param_exprs;
1712 pathnode->singlerow = singlerow;
1713 pathnode->binary_mode = binary_mode;
1714
1715 /*
1716 * For now we set est_entries to 0. cost_memoize_rescan() does all the
1717 * hard work to determine how many cache entries there are likely to be,
1718 * so it seems best to leave it up to that function to fill this field in.
1719 * If left at 0, the executor will make a guess at a good value.
1720 */
1721 pathnode->est_entries = 0;
1722
1723 pathnode->est_calls = clamp_row_est(est_calls);
1724
1725 /* These will also be set later in cost_memoize_rescan() */
1726 pathnode->est_unique_keys = 0.0;
1727 pathnode->est_hit_ratio = 0.0;
1728
1729 /* we should not generate this path type when enable_memoize=false */
1731 pathnode->path.disabled_nodes = subpath->disabled_nodes;
1732
1733 /*
1734 * Add a small additional charge for caching the first entry. All the
1735 * harder calculations for rescans are performed in cost_memoize_rescan().
1736 */
1737 pathnode->path.startup_cost = subpath->startup_cost + cpu_tuple_cost;
1738 pathnode->path.total_cost = subpath->total_cost + cpu_tuple_cost;
1739 pathnode->path.rows = subpath->rows;
1740
1741 return pathnode;
1742}
1743
1744/*
1745 * create_gather_merge_path
1746 *
1747 * Creates a path corresponding to a gather merge scan, returning
1748 * the pathnode.
1749 */
1752 PathTarget *target, List *pathkeys,
1753 Relids required_outer, double *rows)
1754{
1756 int input_disabled_nodes = 0;
1757 Cost input_startup_cost = 0;
1758 Cost input_total_cost = 0;
1759
1760 Assert(subpath->parallel_safe);
1761 Assert(pathkeys);
1762
1763 /*
1764 * The subpath should guarantee that it is adequately ordered either by
1765 * adding an explicit sort node or by using presorted input. We cannot
1766 * add an explicit Sort node for the subpath in createplan.c on additional
1767 * pathkeys, because we can't guarantee the sort would be safe. For
1768 * example, expressions may be volatile or otherwise parallel unsafe.
1769 */
1770 if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
1771 elog(ERROR, "gather merge input not sufficiently sorted");
1772
1773 pathnode->path.pathtype = T_GatherMerge;
1774 pathnode->path.parent = rel;
1775 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1776 required_outer);
1777 pathnode->path.parallel_aware = false;
1778
1779 pathnode->subpath = subpath;
1780 pathnode->num_workers = subpath->parallel_workers;
1781 pathnode->path.pathkeys = pathkeys;
1782 pathnode->path.pathtarget = target ? target : rel->reltarget;
1783
1784 input_disabled_nodes += subpath->disabled_nodes;
1785 input_startup_cost += subpath->startup_cost;
1786 input_total_cost += subpath->total_cost;
1787
1788 cost_gather_merge(pathnode, root, rel, pathnode->path.param_info,
1789 input_disabled_nodes, input_startup_cost,
1790 input_total_cost, rows);
1791
1792 return pathnode;
1793}
1794
1795/*
1796 * create_gather_path
1797 * Creates a path corresponding to a gather scan, returning the
1798 * pathnode.
1799 *
1800 * 'rows' may optionally be set to override row estimates from other sources.
1801 */
1802GatherPath *
1804 PathTarget *target, Relids required_outer, double *rows)
1805{
1806 GatherPath *pathnode = makeNode(GatherPath);
1807
1808 Assert(subpath->parallel_safe);
1809
1810 pathnode->path.pathtype = T_Gather;
1811 pathnode->path.parent = rel;
1812 pathnode->path.pathtarget = target;
1813 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1814 required_outer);
1815 pathnode->path.parallel_aware = false;
1816 pathnode->path.parallel_safe = false;
1817 pathnode->path.parallel_workers = 0;
1818 pathnode->path.pathkeys = NIL; /* Gather has unordered result */
1819
1820 pathnode->subpath = subpath;
1821 pathnode->num_workers = subpath->parallel_workers;
1822 pathnode->single_copy = false;
1823
1824 if (pathnode->num_workers == 0)
1825 {
1826 pathnode->path.pathkeys = subpath->pathkeys;
1827 pathnode->num_workers = 1;
1828 pathnode->single_copy = true;
1829 }
1830
1831 cost_gather(pathnode, root, rel, pathnode->path.param_info, rows);
1832
1833 return pathnode;
1834}
1835
1836/*
1837 * create_subqueryscan_path
1838 * Creates a path corresponding to a scan of a subquery,
1839 * returning the pathnode.
1840 *
1841 * Caller must pass trivial_pathtarget = true if it believes rel->reltarget to
1842 * be trivial, ie just a fetch of all the subquery output columns in order.
1843 * While we could determine that here, the caller can usually do it more
1844 * efficiently (or at least amortize it over multiple calls).
1845 */
1848 bool trivial_pathtarget,
1849 List *pathkeys, Relids required_outer)
1850{
1852
1853 pathnode->path.pathtype = T_SubqueryScan;
1854 pathnode->path.parent = rel;
1855 pathnode->path.pathtarget = rel->reltarget;
1856 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
1857 required_outer);
1858 pathnode->path.parallel_aware = false;
1859 pathnode->path.parallel_safe = rel->consider_parallel &&
1860 subpath->parallel_safe;
1861 pathnode->path.parallel_workers = subpath->parallel_workers;
1862 pathnode->path.pathkeys = pathkeys;
1863 pathnode->subpath = subpath;
1864
1865 cost_subqueryscan(pathnode, root, rel, pathnode->path.param_info,
1866 trivial_pathtarget);
1867
1868 return pathnode;
1869}
1870
1871/*
1872 * create_functionscan_path
1873 * Creates a path corresponding to a sequential scan of a function,
1874 * returning the pathnode.
1875 */
1876Path *
1878 List *pathkeys, Relids required_outer)
1879{
1880 Path *pathnode = makeNode(Path);
1881
1882 pathnode->pathtype = T_FunctionScan;
1883 pathnode->parent = rel;
1884 pathnode->pathtarget = rel->reltarget;
1885 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1886 required_outer);
1887 pathnode->parallel_aware = false;
1888 pathnode->parallel_safe = rel->consider_parallel;
1889 pathnode->parallel_workers = 0;
1890 pathnode->pathkeys = pathkeys;
1891
1892 cost_functionscan(pathnode, root, rel, pathnode->param_info);
1893
1894 return pathnode;
1895}
1896
1897/*
1898 * create_tablefuncscan_path
1899 * Creates a path corresponding to a sequential scan of a table function,
1900 * returning the pathnode.
1901 */
1902Path *
1904 Relids required_outer)
1905{
1906 Path *pathnode = makeNode(Path);
1907
1908 pathnode->pathtype = T_TableFuncScan;
1909 pathnode->parent = rel;
1910 pathnode->pathtarget = rel->reltarget;
1911 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1912 required_outer);
1913 pathnode->parallel_aware = false;
1914 pathnode->parallel_safe = rel->consider_parallel;
1915 pathnode->parallel_workers = 0;
1916 pathnode->pathkeys = NIL; /* result is always unordered */
1917
1918 cost_tablefuncscan(pathnode, root, rel, pathnode->param_info);
1919
1920 return pathnode;
1921}
1922
1923/*
1924 * create_valuesscan_path
1925 * Creates a path corresponding to a scan of a VALUES list,
1926 * returning the pathnode.
1927 */
1928Path *
1930 Relids required_outer)
1931{
1932 Path *pathnode = makeNode(Path);
1933
1934 pathnode->pathtype = T_ValuesScan;
1935 pathnode->parent = rel;
1936 pathnode->pathtarget = rel->reltarget;
1937 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1938 required_outer);
1939 pathnode->parallel_aware = false;
1940 pathnode->parallel_safe = rel->consider_parallel;
1941 pathnode->parallel_workers = 0;
1942 pathnode->pathkeys = NIL; /* result is always unordered */
1943
1944 cost_valuesscan(pathnode, root, rel, pathnode->param_info);
1945
1946 return pathnode;
1947}
1948
1949/*
1950 * create_ctescan_path
1951 * Creates a path corresponding to a scan of a non-self-reference CTE,
1952 * returning the pathnode.
1953 */
1954Path *
1956 List *pathkeys, Relids required_outer)
1957{
1958 Path *pathnode = makeNode(Path);
1959
1960 pathnode->pathtype = T_CteScan;
1961 pathnode->parent = rel;
1962 pathnode->pathtarget = rel->reltarget;
1963 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1964 required_outer);
1965 pathnode->parallel_aware = false;
1966 pathnode->parallel_safe = rel->consider_parallel;
1967 pathnode->parallel_workers = 0;
1968 pathnode->pathkeys = pathkeys;
1969
1970 cost_ctescan(pathnode, root, rel, pathnode->param_info);
1971
1972 return pathnode;
1973}
1974
1975/*
1976 * create_namedtuplestorescan_path
1977 * Creates a path corresponding to a scan of a named tuplestore, returning
1978 * the pathnode.
1979 */
1980Path *
1982 Relids required_outer)
1983{
1984 Path *pathnode = makeNode(Path);
1985
1986 pathnode->pathtype = T_NamedTuplestoreScan;
1987 pathnode->parent = rel;
1988 pathnode->pathtarget = rel->reltarget;
1989 pathnode->param_info = get_baserel_parampathinfo(root, rel,
1990 required_outer);
1991 pathnode->parallel_aware = false;
1992 pathnode->parallel_safe = rel->consider_parallel;
1993 pathnode->parallel_workers = 0;
1994 pathnode->pathkeys = NIL; /* result is always unordered */
1995
1996 cost_namedtuplestorescan(pathnode, root, rel, pathnode->param_info);
1997
1998 return pathnode;
1999}
2000
2001/*
2002 * create_resultscan_path
2003 * Creates a path corresponding to a scan of an RTE_RESULT relation,
2004 * returning the pathnode.
2005 */
2006Path *
2008 Relids required_outer)
2009{
2010 Path *pathnode = makeNode(Path);
2011
2012 pathnode->pathtype = T_Result;
2013 pathnode->parent = rel;
2014 pathnode->pathtarget = rel->reltarget;
2015 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2016 required_outer);
2017 pathnode->parallel_aware = false;
2018 pathnode->parallel_safe = rel->consider_parallel;
2019 pathnode->parallel_workers = 0;
2020 pathnode->pathkeys = NIL; /* result is always unordered */
2021
2022 cost_resultscan(pathnode, root, rel, pathnode->param_info);
2023
2024 return pathnode;
2025}
2026
2027/*
2028 * create_worktablescan_path
2029 * Creates a path corresponding to a scan of a self-reference CTE,
2030 * returning the pathnode.
2031 */
2032Path *
2034 Relids required_outer)
2035{
2036 Path *pathnode = makeNode(Path);
2037
2038 pathnode->pathtype = T_WorkTableScan;
2039 pathnode->parent = rel;
2040 pathnode->pathtarget = rel->reltarget;
2041 pathnode->param_info = get_baserel_parampathinfo(root, rel,
2042 required_outer);
2043 pathnode->parallel_aware = false;
2044 pathnode->parallel_safe = rel->consider_parallel;
2045 pathnode->parallel_workers = 0;
2046 pathnode->pathkeys = NIL; /* result is always unordered */
2047
2048 /* Cost is the same as for a regular CTE scan */
2049 cost_ctescan(pathnode, root, rel, pathnode->param_info);
2050
2051 return pathnode;
2052}
2053
2054/*
2055 * create_foreignscan_path
2056 * Creates a path corresponding to a scan of a foreign base table,
2057 * returning the pathnode.
2058 *
2059 * This function is never called from core Postgres; rather, it's expected
2060 * to be called by the GetForeignPaths function of a foreign data wrapper.
2061 * We make the FDW supply all fields of the path, since we do not have any way
2062 * to calculate them in core. However, there is a usually-sane default for
2063 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2064 */
2067 PathTarget *target,
2068 double rows, int disabled_nodes,
2069 Cost startup_cost, Cost total_cost,
2070 List *pathkeys,
2071 Relids required_outer,
2072 Path *fdw_outerpath,
2073 List *fdw_restrictinfo,
2074 List *fdw_private)
2075{
2076 ForeignPath *pathnode = makeNode(ForeignPath);
2077
2078 /* Historically some FDWs were confused about when to use this */
2079 Assert(IS_SIMPLE_REL(rel));
2080
2081 pathnode->path.pathtype = T_ForeignScan;
2082 pathnode->path.parent = rel;
2083 pathnode->path.pathtarget = target ? target : rel->reltarget;
2084 pathnode->path.param_info = get_baserel_parampathinfo(root, rel,
2085 required_outer);
2086 pathnode->path.parallel_aware = false;
2087 pathnode->path.parallel_safe = rel->consider_parallel;
2088 pathnode->path.parallel_workers = 0;
2089 pathnode->path.rows = rows;
2090 pathnode->path.disabled_nodes = disabled_nodes;
2091 pathnode->path.startup_cost = startup_cost;
2092 pathnode->path.total_cost = total_cost;
2093 pathnode->path.pathkeys = pathkeys;
2094
2095 pathnode->fdw_outerpath = fdw_outerpath;
2096 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2097 pathnode->fdw_private = fdw_private;
2098
2099 return pathnode;
2100}
2101
2102/*
2103 * create_foreign_join_path
2104 * Creates a path corresponding to a scan of a foreign join,
2105 * returning the pathnode.
2106 *
2107 * This function is never called from core Postgres; rather, it's expected
2108 * to be called by the GetForeignJoinPaths function of a foreign data wrapper.
2109 * We make the FDW supply all fields of the path, since we do not have any way
2110 * to calculate them in core. However, there is a usually-sane default for
2111 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2112 */
2115 PathTarget *target,
2116 double rows, int disabled_nodes,
2117 Cost startup_cost, Cost total_cost,
2118 List *pathkeys,
2119 Relids required_outer,
2120 Path *fdw_outerpath,
2121 List *fdw_restrictinfo,
2122 List *fdw_private)
2123{
2124 ForeignPath *pathnode = makeNode(ForeignPath);
2125
2126 /*
2127 * We should use get_joinrel_parampathinfo to handle parameterized paths,
2128 * but the API of this function doesn't support it, and existing
2129 * extensions aren't yet trying to build such paths anyway. For the
2130 * moment just throw an error if someone tries it; eventually we should
2131 * revisit this.
2132 */
2133 if (!bms_is_empty(required_outer) || !bms_is_empty(rel->lateral_relids))
2134 elog(ERROR, "parameterized foreign joins are not supported yet");
2135
2136 pathnode->path.pathtype = T_ForeignScan;
2137 pathnode->path.parent = rel;
2138 pathnode->path.pathtarget = target ? target : rel->reltarget;
2139 pathnode->path.param_info = NULL; /* XXX see above */
2140 pathnode->path.parallel_aware = false;
2141 pathnode->path.parallel_safe = rel->consider_parallel;
2142 pathnode->path.parallel_workers = 0;
2143 pathnode->path.rows = rows;
2144 pathnode->path.disabled_nodes = disabled_nodes;
2145 pathnode->path.startup_cost = startup_cost;
2146 pathnode->path.total_cost = total_cost;
2147 pathnode->path.pathkeys = pathkeys;
2148
2149 pathnode->fdw_outerpath = fdw_outerpath;
2150 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2151 pathnode->fdw_private = fdw_private;
2152
2153 return pathnode;
2154}
2155
2156/*
2157 * create_foreign_upper_path
2158 * Creates a path corresponding to an upper relation that's computed
2159 * directly by an FDW, returning the pathnode.
2160 *
2161 * This function is never called from core Postgres; rather, it's expected to
2162 * be called by the GetForeignUpperPaths function of a foreign data wrapper.
2163 * We make the FDW supply all fields of the path, since we do not have any way
2164 * to calculate them in core. However, there is a usually-sane default for
2165 * the pathtarget (rel->reltarget), so we let a NULL for "target" select that.
2166 */
2169 PathTarget *target,
2170 double rows, int disabled_nodes,
2171 Cost startup_cost, Cost total_cost,
2172 List *pathkeys,
2173 Path *fdw_outerpath,
2174 List *fdw_restrictinfo,
2175 List *fdw_private)
2176{
2177 ForeignPath *pathnode = makeNode(ForeignPath);
2178
2179 /*
2180 * Upper relations should never have any lateral references, since joining
2181 * is complete.
2182 */
2184
2185 pathnode->path.pathtype = T_ForeignScan;
2186 pathnode->path.parent = rel;
2187 pathnode->path.pathtarget = target ? target : rel->reltarget;
2188 pathnode->path.param_info = NULL;
2189 pathnode->path.parallel_aware = false;
2190 pathnode->path.parallel_safe = rel->consider_parallel;
2191 pathnode->path.parallel_workers = 0;
2192 pathnode->path.rows = rows;
2193 pathnode->path.disabled_nodes = disabled_nodes;
2194 pathnode->path.startup_cost = startup_cost;
2195 pathnode->path.total_cost = total_cost;
2196 pathnode->path.pathkeys = pathkeys;
2197
2198 pathnode->fdw_outerpath = fdw_outerpath;
2199 pathnode->fdw_restrictinfo = fdw_restrictinfo;
2200 pathnode->fdw_private = fdw_private;
2201
2202 return pathnode;
2203}
2204
2205/*
2206 * calc_nestloop_required_outer
2207 * Compute the required_outer set for a nestloop join path
2208 *
2209 * Note: when considering a child join, the inputs nonetheless use top-level
2210 * parent relids
2211 *
2212 * Note: result must not share storage with either input
2213 */
2214Relids
2216 Relids outer_paramrels,
2217 Relids innerrelids,
2218 Relids inner_paramrels)
2219{
2220 Relids required_outer;
2221
2222 /* inner_path can require rels from outer path, but not vice versa */
2223 Assert(!bms_overlap(outer_paramrels, innerrelids));
2224 /* easy case if inner path is not parameterized */
2225 if (!inner_paramrels)
2226 return bms_copy(outer_paramrels);
2227 /* else, form the union ... */
2228 required_outer = bms_union(outer_paramrels, inner_paramrels);
2229 /* ... and remove any mention of now-satisfied outer rels */
2230 required_outer = bms_del_members(required_outer,
2231 outerrelids);
2232 return required_outer;
2233}
2234
2235/*
2236 * calc_non_nestloop_required_outer
2237 * Compute the required_outer set for a merge or hash join path
2238 *
2239 * Note: result must not share storage with either input
2240 */
2241Relids
2243{
2244 Relids outer_paramrels = PATH_REQ_OUTER(outer_path);
2245 Relids inner_paramrels = PATH_REQ_OUTER(inner_path);
2246 Relids innerrelids PG_USED_FOR_ASSERTS_ONLY;
2247 Relids outerrelids PG_USED_FOR_ASSERTS_ONLY;
2248 Relids required_outer;
2249
2250 /*
2251 * Any parameterization of the input paths refers to topmost parents of
2252 * the relevant relations, because reparameterize_path_by_child() hasn't
2253 * been called yet. So we must consider topmost parents of the relations
2254 * being joined, too, while checking for disallowed parameterization
2255 * cases.
2256 */
2257 if (inner_path->parent->top_parent_relids)
2258 innerrelids = inner_path->parent->top_parent_relids;
2259 else
2260 innerrelids = inner_path->parent->relids;
2261
2262 if (outer_path->parent->top_parent_relids)
2263 outerrelids = outer_path->parent->top_parent_relids;
2264 else
2265 outerrelids = outer_path->parent->relids;
2266
2267 /* neither path can require rels from the other */
2268 Assert(!bms_overlap(outer_paramrels, innerrelids));
2269 Assert(!bms_overlap(inner_paramrels, outerrelids));
2270 /* form the union ... */
2271 required_outer = bms_union(outer_paramrels, inner_paramrels);
2272 /* we do not need an explicit test for empty; bms_union gets it right */
2273 return required_outer;
2274}
2275
2276/*
2277 * create_nestloop_path
2278 * Creates a pathnode corresponding to a nestloop join between two
2279 * relations.
2280 *
2281 * 'joinrel' is the join relation.
2282 * 'jointype' is the type of join required
2283 * 'workspace' is the result from initial_cost_nestloop
2284 * 'extra' contains various information about the join
2285 * 'outer_path' is the outer path
2286 * 'inner_path' is the inner path
2287 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2288 * 'pathkeys' are the path keys of the new join path
2289 * 'required_outer' is the set of required outer rels
2290 *
2291 * Returns the resulting path node.
2292 */
2293NestPath *
2295 RelOptInfo *joinrel,
2296 JoinType jointype,
2297 JoinCostWorkspace *workspace,
2298 JoinPathExtraData *extra,
2299 Path *outer_path,
2300 Path *inner_path,
2301 List *restrict_clauses,
2302 List *pathkeys,
2303 Relids required_outer)
2304{
2305 NestPath *pathnode = makeNode(NestPath);
2306 Relids inner_req_outer = PATH_REQ_OUTER(inner_path);
2307 Relids outerrelids;
2308
2309 /*
2310 * Paths are parameterized by top-level parents, so run parameterization
2311 * tests on the parent relids.
2312 */
2313 if (outer_path->parent->top_parent_relids)
2314 outerrelids = outer_path->parent->top_parent_relids;
2315 else
2316 outerrelids = outer_path->parent->relids;
2317
2318 /*
2319 * If the inner path is parameterized by the outer, we must drop any
2320 * restrict_clauses that are due to be moved into the inner path. We have
2321 * to do this now, rather than postpone the work till createplan time,
2322 * because the restrict_clauses list can affect the size and cost
2323 * estimates for this path. We detect such clauses by checking for serial
2324 * number match to clauses already enforced in the inner path.
2325 */
2326 if (bms_overlap(inner_req_outer, outerrelids))
2327 {
2328 Bitmapset *enforced_serials = get_param_path_clause_serials(inner_path);
2329 List *jclauses = NIL;
2330 ListCell *lc;
2331
2332 foreach(lc, restrict_clauses)
2333 {
2334 RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
2335
2336 if (!bms_is_member(rinfo->rinfo_serial, enforced_serials))
2337 jclauses = lappend(jclauses, rinfo);
2338 }
2339 restrict_clauses = jclauses;
2340 }
2341
2342 pathnode->jpath.path.pathtype = T_NestLoop;
2343 pathnode->jpath.path.parent = joinrel;
2344 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2345 pathnode->jpath.path.param_info =
2347 joinrel,
2348 outer_path,
2349 inner_path,
2350 extra->sjinfo,
2351 required_outer,
2352 &restrict_clauses);
2353 pathnode->jpath.path.parallel_aware = false;
2354 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2355 outer_path->parallel_safe && inner_path->parallel_safe;
2356 /* This is a foolish way to estimate parallel_workers, but for now... */
2357 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2358 pathnode->jpath.path.pathkeys = pathkeys;
2359 pathnode->jpath.jointype = jointype;
2360 pathnode->jpath.inner_unique = extra->inner_unique;
2361 pathnode->jpath.outerjoinpath = outer_path;
2362 pathnode->jpath.innerjoinpath = inner_path;
2363 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2364
2365 final_cost_nestloop(root, pathnode, workspace, extra);
2366
2367 return pathnode;
2368}
2369
2370/*
2371 * create_mergejoin_path
2372 * Creates a pathnode corresponding to a mergejoin join between
2373 * two relations
2374 *
2375 * 'joinrel' is the join relation
2376 * 'jointype' is the type of join required
2377 * 'workspace' is the result from initial_cost_mergejoin
2378 * 'extra' contains various information about the join
2379 * 'outer_path' is the outer path
2380 * 'inner_path' is the inner path
2381 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2382 * 'pathkeys' are the path keys of the new join path
2383 * 'required_outer' is the set of required outer rels
2384 * 'mergeclauses' are the RestrictInfo nodes to use as merge clauses
2385 * (this should be a subset of the restrict_clauses list)
2386 * 'outersortkeys' are the sort varkeys for the outer relation
2387 * 'innersortkeys' are the sort varkeys for the inner relation
2388 * 'outer_presorted_keys' is the number of presorted keys of the outer path
2389 */
2390MergePath *
2392 RelOptInfo *joinrel,
2393 JoinType jointype,
2394 JoinCostWorkspace *workspace,
2395 JoinPathExtraData *extra,
2396 Path *outer_path,
2397 Path *inner_path,
2398 List *restrict_clauses,
2399 List *pathkeys,
2400 Relids required_outer,
2401 List *mergeclauses,
2402 List *outersortkeys,
2403 List *innersortkeys,
2404 int outer_presorted_keys)
2405{
2406 MergePath *pathnode = makeNode(MergePath);
2407
2408 pathnode->jpath.path.pathtype = T_MergeJoin;
2409 pathnode->jpath.path.parent = joinrel;
2410 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2411 pathnode->jpath.path.param_info =
2413 joinrel,
2414 outer_path,
2415 inner_path,
2416 extra->sjinfo,
2417 required_outer,
2418 &restrict_clauses);
2419 pathnode->jpath.path.parallel_aware = false;
2420 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2421 outer_path->parallel_safe && inner_path->parallel_safe;
2422 /* This is a foolish way to estimate parallel_workers, but for now... */
2423 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2424 pathnode->jpath.path.pathkeys = pathkeys;
2425 pathnode->jpath.jointype = jointype;
2426 pathnode->jpath.inner_unique = extra->inner_unique;
2427 pathnode->jpath.outerjoinpath = outer_path;
2428 pathnode->jpath.innerjoinpath = inner_path;
2429 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2430 pathnode->path_mergeclauses = mergeclauses;
2431 pathnode->outersortkeys = outersortkeys;
2432 pathnode->innersortkeys = innersortkeys;
2433 pathnode->outer_presorted_keys = outer_presorted_keys;
2434 /* pathnode->skip_mark_restore will be set by final_cost_mergejoin */
2435 /* pathnode->materialize_inner will be set by final_cost_mergejoin */
2436
2437 final_cost_mergejoin(root, pathnode, workspace, extra);
2438
2439 return pathnode;
2440}
2441
2442/*
2443 * create_hashjoin_path
2444 * Creates a pathnode corresponding to a hash join between two relations.
2445 *
2446 * 'joinrel' is the join relation
2447 * 'jointype' is the type of join required
2448 * 'workspace' is the result from initial_cost_hashjoin
2449 * 'extra' contains various information about the join
2450 * 'outer_path' is the cheapest outer path
2451 * 'inner_path' is the cheapest inner path
2452 * 'parallel_hash' to select Parallel Hash of inner path (shared hash table)
2453 * 'restrict_clauses' are the RestrictInfo nodes to apply at the join
2454 * 'required_outer' is the set of required outer rels
2455 * 'hashclauses' are the RestrictInfo nodes to use as hash clauses
2456 * (this should be a subset of the restrict_clauses list)
2457 */
2458HashPath *
2460 RelOptInfo *joinrel,
2461 JoinType jointype,
2462 JoinCostWorkspace *workspace,
2463 JoinPathExtraData *extra,
2464 Path *outer_path,
2465 Path *inner_path,
2466 bool parallel_hash,
2467 List *restrict_clauses,
2468 Relids required_outer,
2469 List *hashclauses)
2470{
2471 HashPath *pathnode = makeNode(HashPath);
2472
2473 pathnode->jpath.path.pathtype = T_HashJoin;
2474 pathnode->jpath.path.parent = joinrel;
2475 pathnode->jpath.path.pathtarget = joinrel->reltarget;
2476 pathnode->jpath.path.param_info =
2478 joinrel,
2479 outer_path,
2480 inner_path,
2481 extra->sjinfo,
2482 required_outer,
2483 &restrict_clauses);
2484 pathnode->jpath.path.parallel_aware =
2485 joinrel->consider_parallel && parallel_hash;
2486 pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
2487 outer_path->parallel_safe && inner_path->parallel_safe;
2488 /* This is a foolish way to estimate parallel_workers, but for now... */
2489 pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
2490
2491 /*
2492 * A hashjoin never has pathkeys, since its output ordering is
2493 * unpredictable due to possible batching. XXX If the inner relation is
2494 * small enough, we could instruct the executor that it must not batch,
2495 * and then we could assume that the output inherits the outer relation's
2496 * ordering, which might save a sort step. However there is considerable
2497 * downside if our estimate of the inner relation size is badly off. For
2498 * the moment we don't risk it. (Note also that if we wanted to take this
2499 * seriously, joinpath.c would have to consider many more paths for the
2500 * outer rel than it does now.)
2501 */
2502 pathnode->jpath.path.pathkeys = NIL;
2503 pathnode->jpath.jointype = jointype;
2504 pathnode->jpath.inner_unique = extra->inner_unique;
2505 pathnode->jpath.outerjoinpath = outer_path;
2506 pathnode->jpath.innerjoinpath = inner_path;
2507 pathnode->jpath.joinrestrictinfo = restrict_clauses;
2508 pathnode->path_hashclauses = hashclauses;
2509 /* final_cost_hashjoin will fill in pathnode->num_batches */
2510
2511 final_cost_hashjoin(root, pathnode, workspace, extra);
2512
2513 return pathnode;
2514}
2515
2516/*
2517 * create_projection_path
2518 * Creates a pathnode that represents performing a projection.
2519 *
2520 * 'rel' is the parent relation associated with the result
2521 * 'subpath' is the path representing the source of data
2522 * 'target' is the PathTarget to be computed
2523 */
2526 RelOptInfo *rel,
2527 Path *subpath,
2528 PathTarget *target)
2529{
2531 PathTarget *oldtarget;
2532
2533 /*
2534 * We mustn't put a ProjectionPath directly above another; it's useless
2535 * and will confuse create_projection_plan. Rather than making sure all
2536 * callers handle that, let's implement it here, by stripping off any
2537 * ProjectionPath in what we're given. Given this rule, there won't be
2538 * more than one.
2539 */
2541 {
2543
2544 Assert(subpp->path.parent == rel);
2545 subpath = subpp->subpath;
2547 }
2548
2549 pathnode->path.pathtype = T_Result;
2550 pathnode->path.parent = rel;
2551 pathnode->path.pathtarget = target;
2552 pathnode->path.param_info = subpath->param_info;
2553 pathnode->path.parallel_aware = false;
2554 pathnode->path.parallel_safe = rel->consider_parallel &&
2555 subpath->parallel_safe &&
2556 is_parallel_safe(root, (Node *) target->exprs);
2557 pathnode->path.parallel_workers = subpath->parallel_workers;
2558 /* Projection does not change the sort order */
2559 pathnode->path.pathkeys = subpath->pathkeys;
2560
2561 pathnode->subpath = subpath;
2562
2563 /*
2564 * We might not need a separate Result node. If the input plan node type
2565 * can project, we can just tell it to project something else. Or, if it
2566 * can't project but the desired target has the same expression list as
2567 * what the input will produce anyway, we can still give it the desired
2568 * tlist (possibly changing its ressortgroupref labels, but nothing else).
2569 * Note: in the latter case, create_projection_plan has to recheck our
2570 * conclusion; see comments therein.
2571 */
2572 oldtarget = subpath->pathtarget;
2574 equal(oldtarget->exprs, target->exprs))
2575 {
2576 /* No separate Result node needed */
2577 pathnode->dummypp = true;
2578
2579 /*
2580 * Set cost of plan as subpath's cost, adjusted for tlist replacement.
2581 */
2582 pathnode->path.rows = subpath->rows;
2583 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2584 pathnode->path.startup_cost = subpath->startup_cost +
2585 (target->cost.startup - oldtarget->cost.startup);
2586 pathnode->path.total_cost = subpath->total_cost +
2587 (target->cost.startup - oldtarget->cost.startup) +
2588 (target->cost.per_tuple - oldtarget->cost.per_tuple) * subpath->rows;
2589 }
2590 else
2591 {
2592 /* We really do need the Result node */
2593 pathnode->dummypp = false;
2594
2595 /*
2596 * The Result node's cost is cpu_tuple_cost per row, plus the cost of
2597 * evaluating the tlist. There is no qual to worry about.
2598 */
2599 pathnode->path.rows = subpath->rows;
2600 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2601 pathnode->path.startup_cost = subpath->startup_cost +
2602 target->cost.startup;
2603 pathnode->path.total_cost = subpath->total_cost +
2604 target->cost.startup +
2605 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows;
2606 }
2607
2608 return pathnode;
2609}
2610
2611/*
2612 * apply_projection_to_path
2613 * Add a projection step, or just apply the target directly to given path.
2614 *
2615 * This has the same net effect as create_projection_path(), except that if
2616 * a separate Result plan node isn't needed, we just replace the given path's
2617 * pathtarget with the desired one. This must be used only when the caller
2618 * knows that the given path isn't referenced elsewhere and so can be modified
2619 * in-place.
2620 *
2621 * If the input path is a GatherPath or GatherMergePath, we try to push the
2622 * new target down to its input as well; this is a yet more invasive
2623 * modification of the input path, which create_projection_path() can't do.
2624 *
2625 * Note that we mustn't change the source path's parent link; so when it is
2626 * add_path'd to "rel" things will be a bit inconsistent. So far that has
2627 * not caused any trouble.
2628 *
2629 * 'rel' is the parent relation associated with the result
2630 * 'path' is the path representing the source of data
2631 * 'target' is the PathTarget to be computed
2632 */
2633Path *
2635 RelOptInfo *rel,
2636 Path *path,
2637 PathTarget *target)
2638{
2639 QualCost oldcost;
2640
2641 /*
2642 * If given path can't project, we might need a Result node, so make a
2643 * separate ProjectionPath.
2644 */
2645 if (!is_projection_capable_path(path))
2646 return (Path *) create_projection_path(root, rel, path, target);
2647
2648 /*
2649 * We can just jam the desired tlist into the existing path, being sure to
2650 * update its cost estimates appropriately.
2651 */
2652 oldcost = path->pathtarget->cost;
2653 path->pathtarget = target;
2654
2655 path->startup_cost += target->cost.startup - oldcost.startup;
2656 path->total_cost += target->cost.startup - oldcost.startup +
2657 (target->cost.per_tuple - oldcost.per_tuple) * path->rows;
2658
2659 /*
2660 * If the path happens to be a Gather or GatherMerge path, we'd like to
2661 * arrange for the subpath to return the required target list so that
2662 * workers can help project. But if there is something that is not
2663 * parallel-safe in the target expressions, then we can't.
2664 */
2665 if ((IsA(path, GatherPath) || IsA(path, GatherMergePath)) &&
2666 is_parallel_safe(root, (Node *) target->exprs))
2667 {
2668 /*
2669 * We always use create_projection_path here, even if the subpath is
2670 * projection-capable, so as to avoid modifying the subpath in place.
2671 * It seems unlikely at present that there could be any other
2672 * references to the subpath, but better safe than sorry.
2673 *
2674 * Note that we don't change the parallel path's cost estimates; it
2675 * might be appropriate to do so, to reflect the fact that the bulk of
2676 * the target evaluation will happen in workers.
2677 */
2678 if (IsA(path, GatherPath))
2679 {
2680 GatherPath *gpath = (GatherPath *) path;
2681
2682 gpath->subpath = (Path *)
2684 gpath->subpath->parent,
2685 gpath->subpath,
2686 target);
2687 }
2688 else
2689 {
2690 GatherMergePath *gmpath = (GatherMergePath *) path;
2691
2692 gmpath->subpath = (Path *)
2694 gmpath->subpath->parent,
2695 gmpath->subpath,
2696 target);
2697 }
2698 }
2699 else if (path->parallel_safe &&
2700 !is_parallel_safe(root, (Node *) target->exprs))
2701 {
2702 /*
2703 * We're inserting a parallel-restricted target list into a path
2704 * currently marked parallel-safe, so we have to mark it as no longer
2705 * safe.
2706 */
2707 path->parallel_safe = false;
2708 }
2709
2710 return path;
2711}
2712
2713/*
2714 * create_set_projection_path
2715 * Creates a pathnode that represents performing a projection that
2716 * includes set-returning functions.
2717 *
2718 * 'rel' is the parent relation associated with the result
2719 * 'subpath' is the path representing the source of data
2720 * 'target' is the PathTarget to be computed
2721 */
2724 RelOptInfo *rel,
2725 Path *subpath,
2726 PathTarget *target)
2727{
2729 double tlist_rows;
2730 ListCell *lc;
2731
2732 pathnode->path.pathtype = T_ProjectSet;
2733 pathnode->path.parent = rel;
2734 pathnode->path.pathtarget = target;
2735 /* For now, assume we are above any joins, so no parameterization */
2736 pathnode->path.param_info = NULL;
2737 pathnode->path.parallel_aware = false;
2738 pathnode->path.parallel_safe = rel->consider_parallel &&
2739 subpath->parallel_safe &&
2740 is_parallel_safe(root, (Node *) target->exprs);
2741 pathnode->path.parallel_workers = subpath->parallel_workers;
2742 /* Projection does not change the sort order XXX? */
2743 pathnode->path.pathkeys = subpath->pathkeys;
2744
2745 pathnode->subpath = subpath;
2746
2747 /*
2748 * Estimate number of rows produced by SRFs for each row of input; if
2749 * there's more than one in this node, use the maximum.
2750 */
2751 tlist_rows = 1;
2752 foreach(lc, target->exprs)
2753 {
2754 Node *node = (Node *) lfirst(lc);
2755 double itemrows;
2756
2757 itemrows = expression_returns_set_rows(root, node);
2758 if (tlist_rows < itemrows)
2759 tlist_rows = itemrows;
2760 }
2761
2762 /*
2763 * In addition to the cost of evaluating the tlist, charge cpu_tuple_cost
2764 * per input row, and half of cpu_tuple_cost for each added output row.
2765 * This is slightly bizarre maybe, but it's what 9.6 did; we may revisit
2766 * this estimate later.
2767 */
2768 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2769 pathnode->path.rows = subpath->rows * tlist_rows;
2770 pathnode->path.startup_cost = subpath->startup_cost +
2771 target->cost.startup;
2772 pathnode->path.total_cost = subpath->total_cost +
2773 target->cost.startup +
2774 (cpu_tuple_cost + target->cost.per_tuple) * subpath->rows +
2775 (pathnode->path.rows - subpath->rows) * cpu_tuple_cost / 2;
2776
2777 return pathnode;
2778}
2779
2780/*
2781 * create_incremental_sort_path
2782 * Creates a pathnode that represents performing an incremental sort.
2783 *
2784 * 'rel' is the parent relation associated with the result
2785 * 'subpath' is the path representing the source of data
2786 * 'pathkeys' represents the desired sort order
2787 * 'presorted_keys' is the number of keys by which the input path is
2788 * already sorted
2789 * 'limit_tuples' is the estimated bound on the number of output tuples,
2790 * or -1 if no LIMIT or couldn't estimate
2791 */
2794 RelOptInfo *rel,
2795 Path *subpath,
2796 List *pathkeys,
2797 int presorted_keys,
2798 double limit_tuples)
2799{
2801 SortPath *pathnode = &sort->spath;
2802
2803 pathnode->path.pathtype = T_IncrementalSort;
2804 pathnode->path.parent = rel;
2805 /* Sort doesn't project, so use source path's pathtarget */
2806 pathnode->path.pathtarget = subpath->pathtarget;
2807 pathnode->path.param_info = subpath->param_info;
2808 pathnode->path.parallel_aware = false;
2809 pathnode->path.parallel_safe = rel->consider_parallel &&
2810 subpath->parallel_safe;
2811 pathnode->path.parallel_workers = subpath->parallel_workers;
2812 pathnode->path.pathkeys = pathkeys;
2813
2814 pathnode->subpath = subpath;
2815
2816 cost_incremental_sort(&pathnode->path,
2817 root, pathkeys, presorted_keys,
2818 subpath->disabled_nodes,
2819 subpath->startup_cost,
2820 subpath->total_cost,
2821 subpath->rows,
2822 subpath->pathtarget->width,
2823 0.0, /* XXX comparison_cost shouldn't be 0? */
2824 work_mem, limit_tuples);
2825
2826 sort->nPresortedCols = presorted_keys;
2827
2828 return sort;
2829}
2830
2831/*
2832 * create_sort_path
2833 * Creates a pathnode that represents performing an explicit sort.
2834 *
2835 * 'rel' is the parent relation associated with the result
2836 * 'subpath' is the path representing the source of data
2837 * 'pathkeys' represents the desired sort order
2838 * 'limit_tuples' is the estimated bound on the number of output tuples,
2839 * or -1 if no LIMIT or couldn't estimate
2840 */
2841SortPath *
2843 RelOptInfo *rel,
2844 Path *subpath,
2845 List *pathkeys,
2846 double limit_tuples)
2847{
2848 SortPath *pathnode = makeNode(SortPath);
2849
2850 pathnode->path.pathtype = T_Sort;
2851 pathnode->path.parent = rel;
2852 /* Sort doesn't project, so use source path's pathtarget */
2853 pathnode->path.pathtarget = subpath->pathtarget;
2854 pathnode->path.param_info = subpath->param_info;
2855 pathnode->path.parallel_aware = false;
2856 pathnode->path.parallel_safe = rel->consider_parallel &&
2857 subpath->parallel_safe;
2858 pathnode->path.parallel_workers = subpath->parallel_workers;
2859 pathnode->path.pathkeys = pathkeys;
2860
2861 pathnode->subpath = subpath;
2862
2863 cost_sort(&pathnode->path, root, pathkeys,
2864 subpath->disabled_nodes,
2865 subpath->total_cost,
2866 subpath->rows,
2867 subpath->pathtarget->width,
2868 0.0, /* XXX comparison_cost shouldn't be 0? */
2869 work_mem, limit_tuples);
2870
2871 return pathnode;
2872}
2873
2874/*
2875 * create_group_path
2876 * Creates a pathnode that represents performing grouping of presorted input
2877 *
2878 * 'rel' is the parent relation associated with the result
2879 * 'subpath' is the path representing the source of data
2880 * 'target' is the PathTarget to be computed
2881 * 'groupClause' is a list of SortGroupClause's representing the grouping
2882 * 'qual' is the HAVING quals if any
2883 * 'numGroups' is the estimated number of groups
2884 */
2885GroupPath *
2887 RelOptInfo *rel,
2888 Path *subpath,
2889 List *groupClause,
2890 List *qual,
2891 double numGroups)
2892{
2893 GroupPath *pathnode = makeNode(GroupPath);
2894 PathTarget *target = rel->reltarget;
2895
2896 pathnode->path.pathtype = T_Group;
2897 pathnode->path.parent = rel;
2898 pathnode->path.pathtarget = target;
2899 /* For now, assume we are above any joins, so no parameterization */
2900 pathnode->path.param_info = NULL;
2901 pathnode->path.parallel_aware = false;
2902 pathnode->path.parallel_safe = rel->consider_parallel &&
2903 subpath->parallel_safe;
2904 pathnode->path.parallel_workers = subpath->parallel_workers;
2905 /* Group doesn't change sort ordering */
2906 pathnode->path.pathkeys = subpath->pathkeys;
2907
2908 pathnode->subpath = subpath;
2909
2910 pathnode->groupClause = groupClause;
2911 pathnode->qual = qual;
2912
2913 cost_group(&pathnode->path, root,
2914 list_length(groupClause),
2915 numGroups,
2916 qual,
2917 subpath->disabled_nodes,
2918 subpath->startup_cost, subpath->total_cost,
2919 subpath->rows);
2920
2921 /* add tlist eval cost for each output row */
2922 pathnode->path.startup_cost += target->cost.startup;
2923 pathnode->path.total_cost += target->cost.startup +
2924 target->cost.per_tuple * pathnode->path.rows;
2925
2926 return pathnode;
2927}
2928
2929/*
2930 * create_unique_path
2931 * Creates a pathnode that represents performing an explicit Unique step
2932 * on presorted input.
2933 *
2934 * 'rel' is the parent relation associated with the result
2935 * 'subpath' is the path representing the source of data
2936 * 'numCols' is the number of grouping columns
2937 * 'numGroups' is the estimated number of groups
2938 *
2939 * The input path must be sorted on the grouping columns, plus possibly
2940 * additional columns; so the first numCols pathkeys are the grouping columns
2941 */
2942UniquePath *
2944 RelOptInfo *rel,
2945 Path *subpath,
2946 int numCols,
2947 double numGroups)
2948{
2949 UniquePath *pathnode = makeNode(UniquePath);
2950
2951 pathnode->path.pathtype = T_Unique;
2952 pathnode->path.parent = rel;
2953 /* Unique doesn't project, so use source path's pathtarget */
2954 pathnode->path.pathtarget = subpath->pathtarget;
2955 pathnode->path.param_info = subpath->param_info;
2956 pathnode->path.parallel_aware = false;
2957 pathnode->path.parallel_safe = rel->consider_parallel &&
2958 subpath->parallel_safe;
2959 pathnode->path.parallel_workers = subpath->parallel_workers;
2960 /* Unique doesn't change the input ordering */
2961 pathnode->path.pathkeys = subpath->pathkeys;
2962
2963 pathnode->subpath = subpath;
2964 pathnode->numkeys = numCols;
2965
2966 /*
2967 * Charge one cpu_operator_cost per comparison per input tuple. We assume
2968 * all columns get compared at most of the tuples. (XXX probably this is
2969 * an overestimate.)
2970 */
2971 pathnode->path.disabled_nodes = subpath->disabled_nodes;
2972 pathnode->path.startup_cost = subpath->startup_cost;
2973 pathnode->path.total_cost = subpath->total_cost +
2974 cpu_operator_cost * subpath->rows * numCols;
2975 pathnode->path.rows = numGroups;
2976
2977 return pathnode;
2978}
2979
2980/*
2981 * create_agg_path
2982 * Creates a pathnode that represents performing aggregation/grouping
2983 *
2984 * 'rel' is the parent relation associated with the result
2985 * 'subpath' is the path representing the source of data
2986 * 'target' is the PathTarget to be computed
2987 * 'aggstrategy' is the Agg node's basic implementation strategy
2988 * 'aggsplit' is the Agg node's aggregate-splitting mode
2989 * 'groupClause' is a list of SortGroupClause's representing the grouping
2990 * 'qual' is the HAVING quals if any
2991 * 'aggcosts' contains cost info about the aggregate functions to be computed
2992 * 'numGroups' is the estimated number of groups (1 if not grouping)
2993 */
2994AggPath *
2996 RelOptInfo *rel,
2997 Path *subpath,
2998 PathTarget *target,
2999 AggStrategy aggstrategy,
3000 AggSplit aggsplit,
3001 List *groupClause,
3002 List *qual,
3003 const AggClauseCosts *aggcosts,
3004 double numGroups)
3005{
3006 AggPath *pathnode = makeNode(AggPath);
3007
3008 pathnode->path.pathtype = T_Agg;
3009 pathnode->path.parent = rel;
3010 pathnode->path.pathtarget = target;
3011 pathnode->path.param_info = subpath->param_info;
3012 pathnode->path.parallel_aware = false;
3013 pathnode->path.parallel_safe = rel->consider_parallel &&
3014 subpath->parallel_safe;
3015 pathnode->path.parallel_workers = subpath->parallel_workers;
3016
3017 if (aggstrategy == AGG_SORTED)
3018 {
3019 /*
3020 * Attempt to preserve the order of the subpath. Additional pathkeys
3021 * may have been added in adjust_group_pathkeys_for_groupagg() to
3022 * support ORDER BY / DISTINCT aggregates. Pathkeys added there
3023 * belong to columns within the aggregate function, so we must strip
3024 * these additional pathkeys off as those columns are unavailable
3025 * above the aggregate node.
3026 */
3027 if (list_length(subpath->pathkeys) > root->num_groupby_pathkeys)
3028 pathnode->path.pathkeys = list_copy_head(subpath->pathkeys,
3029 root->num_groupby_pathkeys);
3030 else
3031 pathnode->path.pathkeys = subpath->pathkeys; /* preserves order */
3032 }
3033 else
3034 pathnode->path.pathkeys = NIL; /* output is unordered */
3035
3036 pathnode->subpath = subpath;
3037
3038 pathnode->aggstrategy = aggstrategy;
3039 pathnode->aggsplit = aggsplit;
3040 pathnode->numGroups = numGroups;
3041 pathnode->transitionSpace = aggcosts ? aggcosts->transitionSpace : 0;
3042 pathnode->groupClause = groupClause;
3043 pathnode->qual = qual;
3044
3045 cost_agg(&pathnode->path, root,
3046 aggstrategy, aggcosts,
3047 list_length(groupClause), numGroups,
3048 qual,
3049 subpath->disabled_nodes,
3050 subpath->startup_cost, subpath->total_cost,
3051 subpath->rows, subpath->pathtarget->width);
3052
3053 /* add tlist eval cost for each output row */
3054 pathnode->path.startup_cost += target->cost.startup;
3055 pathnode->path.total_cost += target->cost.startup +
3056 target->cost.per_tuple * pathnode->path.rows;
3057
3058 return pathnode;
3059}
3060
3061/*
3062 * create_groupingsets_path
3063 * Creates a pathnode that represents performing GROUPING SETS aggregation
3064 *
3065 * GroupingSetsPath represents sorted grouping with one or more grouping sets.
3066 * The input path's result must be sorted to match the last entry in
3067 * rollup_groupclauses.
3068 *
3069 * 'rel' is the parent relation associated with the result
3070 * 'subpath' is the path representing the source of data
3071 * 'target' is the PathTarget to be computed
3072 * 'having_qual' is the HAVING quals if any
3073 * 'rollups' is a list of RollupData nodes
3074 * 'agg_costs' contains cost info about the aggregate functions to be computed
3075 */
3078 RelOptInfo *rel,
3079 Path *subpath,
3080 List *having_qual,
3081 AggStrategy aggstrategy,
3082 List *rollups,
3083 const AggClauseCosts *agg_costs)
3084{
3086 PathTarget *target = rel->reltarget;
3087 ListCell *lc;
3088 bool is_first = true;
3089 bool is_first_sort = true;
3090
3091 /* The topmost generated Plan node will be an Agg */
3092 pathnode->path.pathtype = T_Agg;
3093 pathnode->path.parent = rel;
3094 pathnode->path.pathtarget = target;
3095 pathnode->path.param_info = subpath->param_info;
3096 pathnode->path.parallel_aware = false;
3097 pathnode->path.parallel_safe = rel->consider_parallel &&
3098 subpath->parallel_safe;
3099 pathnode->path.parallel_workers = subpath->parallel_workers;
3100 pathnode->subpath = subpath;
3101
3102 /*
3103 * Simplify callers by downgrading AGG_SORTED to AGG_PLAIN, and AGG_MIXED
3104 * to AGG_HASHED, here if possible.
3105 */
3106 if (aggstrategy == AGG_SORTED &&
3107 list_length(rollups) == 1 &&
3108 ((RollupData *) linitial(rollups))->groupClause == NIL)
3109 aggstrategy = AGG_PLAIN;
3110
3111 if (aggstrategy == AGG_MIXED &&
3112 list_length(rollups) == 1)
3113 aggstrategy = AGG_HASHED;
3114
3115 /*
3116 * Output will be in sorted order by group_pathkeys if, and only if, there
3117 * is a single rollup operation on a non-empty list of grouping
3118 * expressions.
3119 */
3120 if (aggstrategy == AGG_SORTED && list_length(rollups) == 1)
3121 pathnode->path.pathkeys = root->group_pathkeys;
3122 else
3123 pathnode->path.pathkeys = NIL;
3124
3125 pathnode->aggstrategy = aggstrategy;
3126 pathnode->rollups = rollups;
3127 pathnode->qual = having_qual;
3128 pathnode->transitionSpace = agg_costs ? agg_costs->transitionSpace : 0;
3129
3130 Assert(rollups != NIL);
3131 Assert(aggstrategy != AGG_PLAIN || list_length(rollups) == 1);
3132 Assert(aggstrategy != AGG_MIXED || list_length(rollups) > 1);
3133
3134 foreach(lc, rollups)
3135 {
3136 RollupData *rollup = lfirst(lc);
3137 List *gsets = rollup->gsets;
3138 int numGroupCols = list_length(linitial(gsets));
3139
3140 /*
3141 * In AGG_SORTED or AGG_PLAIN mode, the first rollup takes the
3142 * (already-sorted) input, and following ones do their own sort.
3143 *
3144 * In AGG_HASHED mode, there is one rollup for each grouping set.
3145 *
3146 * In AGG_MIXED mode, the first rollups are hashed, the first
3147 * non-hashed one takes the (already-sorted) input, and following ones
3148 * do their own sort.
3149 */
3150 if (is_first)
3151 {
3152 cost_agg(&pathnode->path, root,
3153 aggstrategy,
3154 agg_costs,
3155 numGroupCols,
3156 rollup->numGroups,
3157 having_qual,
3158 subpath->disabled_nodes,
3159 subpath->startup_cost,
3160 subpath->total_cost,
3161 subpath->rows,
3162 subpath->pathtarget->width);
3163 is_first = false;
3164 if (!rollup->is_hashed)
3165 is_first_sort = false;
3166 }
3167 else
3168 {
3169 Path sort_path; /* dummy for result of cost_sort */
3170 Path agg_path; /* dummy for result of cost_agg */
3171
3172 if (rollup->is_hashed || is_first_sort)
3173 {
3174 /*
3175 * Account for cost of aggregation, but don't charge input
3176 * cost again
3177 */
3178 cost_agg(&agg_path, root,
3179 rollup->is_hashed ? AGG_HASHED : AGG_SORTED,
3180 agg_costs,
3181 numGroupCols,
3182 rollup->numGroups,
3183 having_qual,
3184 0, 0.0, 0.0,
3185 subpath->rows,
3186 subpath->pathtarget->width);
3187 if (!rollup->is_hashed)
3188 is_first_sort = false;
3189 }
3190 else
3191 {
3192 /* Account for cost of sort, but don't charge input cost again */
3193 cost_sort(&sort_path, root, NIL, 0,
3194 0.0,
3195 subpath->rows,
3196 subpath->pathtarget->width,
3197 0.0,
3198 work_mem,
3199 -1.0);
3200
3201 /* Account for cost of aggregation */
3202
3203 cost_agg(&agg_path, root,
3204 AGG_SORTED,
3205 agg_costs,
3206 numGroupCols,
3207 rollup->numGroups,
3208 having_qual,
3209 sort_path.disabled_nodes,
3210 sort_path.startup_cost,
3211 sort_path.total_cost,
3212 sort_path.rows,
3213 subpath->pathtarget->width);
3214 }
3215
3216 pathnode->path.disabled_nodes += agg_path.disabled_nodes;
3217 pathnode->path.total_cost += agg_path.total_cost;
3218 pathnode->path.rows += agg_path.rows;
3219 }
3220 }
3221
3222 /* add tlist eval cost for each output row */
3223 pathnode->path.startup_cost += target->cost.startup;
3224 pathnode->path.total_cost += target->cost.startup +
3225 target->cost.per_tuple * pathnode->path.rows;
3226
3227 return pathnode;
3228}
3229
3230/*
3231 * create_minmaxagg_path
3232 * Creates a pathnode that represents computation of MIN/MAX aggregates
3233 *
3234 * 'rel' is the parent relation associated with the result
3235 * 'target' is the PathTarget to be computed
3236 * 'mmaggregates' is a list of MinMaxAggInfo structs
3237 * 'quals' is the HAVING quals if any
3238 */
3241 RelOptInfo *rel,
3242 PathTarget *target,
3243 List *mmaggregates,
3244 List *quals)
3245{
3247 Cost initplan_cost;
3248 int initplan_disabled_nodes = 0;
3249 ListCell *lc;
3250
3251 /* The topmost generated Plan node will be a Result */
3252 pathnode->path.pathtype = T_Result;
3253 pathnode->path.parent = rel;
3254 pathnode->path.pathtarget = target;
3255 /* For now, assume we are above any joins, so no parameterization */
3256 pathnode->path.param_info = NULL;
3257 pathnode->path.parallel_aware = false;
3258 pathnode->path.parallel_safe = true; /* might change below */
3259 pathnode->path.parallel_workers = 0;
3260 /* Result is one unordered row */
3261 pathnode->path.rows = 1;
3262 pathnode->path.pathkeys = NIL;
3263
3264 pathnode->mmaggregates = mmaggregates;
3265 pathnode->quals = quals;
3266
3267 /* Calculate cost of all the initplans, and check parallel safety */
3268 initplan_cost = 0;
3269 foreach(lc, mmaggregates)
3270 {
3271 MinMaxAggInfo *mminfo = (MinMaxAggInfo *) lfirst(lc);
3272
3273 initplan_disabled_nodes += mminfo->path->disabled_nodes;
3274 initplan_cost += mminfo->pathcost;
3275 if (!mminfo->path->parallel_safe)
3276 pathnode->path.parallel_safe = false;
3277 }
3278
3279 /* add tlist eval cost for each output row, plus cpu_tuple_cost */
3280 pathnode->path.disabled_nodes = initplan_disabled_nodes;
3281 pathnode->path.startup_cost = initplan_cost + target->cost.startup;
3282 pathnode->path.total_cost = initplan_cost + target->cost.startup +
3283 target->cost.per_tuple + cpu_tuple_cost;
3284
3285 /*
3286 * Add cost of qual, if any --- but we ignore its selectivity, since our
3287 * rowcount estimate should be 1 no matter what the qual is.
3288 */
3289 if (quals)
3290 {
3291 QualCost qual_cost;
3292
3293 cost_qual_eval(&qual_cost, quals, root);
3294 pathnode->path.startup_cost += qual_cost.startup;
3295 pathnode->path.total_cost += qual_cost.startup + qual_cost.per_tuple;
3296 }
3297
3298 /*
3299 * If the initplans were all parallel-safe, also check safety of the
3300 * target and quals. (The Result node itself isn't parallelizable, but if
3301 * we are in a subquery then it can be useful for the outer query to know
3302 * that this one is parallel-safe.)
3303 */
3304 if (pathnode->path.parallel_safe)
3305 pathnode->path.parallel_safe =
3306 is_parallel_safe(root, (Node *) target->exprs) &&
3307 is_parallel_safe(root, (Node *) quals);
3308
3309 return pathnode;
3310}
3311
3312/*
3313 * create_windowagg_path
3314 * Creates a pathnode that represents computation of window functions
3315 *
3316 * 'rel' is the parent relation associated with the result
3317 * 'subpath' is the path representing the source of data
3318 * 'target' is the PathTarget to be computed
3319 * 'windowFuncs' is a list of WindowFunc structs
3320 * 'runCondition' is a list of OpExprs to short-circuit WindowAgg execution
3321 * 'winclause' is a WindowClause that is common to all the WindowFuncs
3322 * 'qual' WindowClause.runconditions from lower-level WindowAggPaths.
3323 * Must always be NIL when topwindow == false
3324 * 'topwindow' pass as true only for the top-level WindowAgg. False for all
3325 * intermediate WindowAggs.
3326 *
3327 * The input must be sorted according to the WindowClause's PARTITION keys
3328 * plus ORDER BY keys.
3329 */
3332 RelOptInfo *rel,
3333 Path *subpath,
3334 PathTarget *target,
3335 List *windowFuncs,
3336 List *runCondition,
3337 WindowClause *winclause,
3338 List *qual,
3339 bool topwindow)
3340{
3342
3343 /* qual can only be set for the topwindow */
3344 Assert(qual == NIL || topwindow);
3345
3346 pathnode->path.pathtype = T_WindowAgg;
3347 pathnode->path.parent = rel;
3348 pathnode->path.pathtarget = target;
3349 /* For now, assume we are above any joins, so no parameterization */
3350 pathnode->path.param_info = NULL;
3351 pathnode->path.parallel_aware = false;
3352 pathnode->path.parallel_safe = rel->consider_parallel &&
3353 subpath->parallel_safe;
3354 pathnode->path.parallel_workers = subpath->parallel_workers;
3355 /* WindowAgg preserves the input sort order */
3356 pathnode->path.pathkeys = subpath->pathkeys;
3357
3358 pathnode->subpath = subpath;
3359 pathnode->winclause = winclause;
3360 pathnode->qual = qual;
3361 pathnode->runCondition = runCondition;
3362 pathnode->topwindow = topwindow;
3363
3364 /*
3365 * For costing purposes, assume that there are no redundant partitioning
3366 * or ordering columns; it's not worth the trouble to deal with that
3367 * corner case here. So we just pass the unmodified list lengths to
3368 * cost_windowagg.
3369 */
3370 cost_windowagg(&pathnode->path, root,
3371 windowFuncs,
3372 winclause,
3373 subpath->disabled_nodes,
3374 subpath->startup_cost,
3375 subpath->total_cost,
3376 subpath->rows);
3377
3378 /* add tlist eval cost for each output row */
3379 pathnode->path.startup_cost += target->cost.startup;
3380 pathnode->path.total_cost += target->cost.startup +
3381 target->cost.per_tuple * pathnode->path.rows;
3382
3383 return pathnode;
3384}
3385
3386/*
3387 * create_setop_path
3388 * Creates a pathnode that represents computation of INTERSECT or EXCEPT
3389 *
3390 * 'rel' is the parent relation associated with the result
3391 * 'leftpath' is the path representing the left-hand source of data
3392 * 'rightpath' is the path representing the right-hand source of data
3393 * 'cmd' is the specific semantics (INTERSECT or EXCEPT, with/without ALL)
3394 * 'strategy' is the implementation strategy (sorted or hashed)
3395 * 'groupList' is a list of SortGroupClause's representing the grouping
3396 * 'numGroups' is the estimated number of distinct groups in left-hand input
3397 * 'outputRows' is the estimated number of output rows
3398 *
3399 * leftpath and rightpath must produce the same columns. Moreover, if
3400 * strategy is SETOP_SORTED, leftpath and rightpath must both be sorted
3401 * by all the grouping columns.
3402 */
3403SetOpPath *
3405 RelOptInfo *rel,
3406 Path *leftpath,
3407 Path *rightpath,
3408 SetOpCmd cmd,
3409 SetOpStrategy strategy,
3410 List *groupList,
3411 double numGroups,
3412 double outputRows)
3413{
3414 SetOpPath *pathnode = makeNode(SetOpPath);
3415
3416 pathnode->path.pathtype = T_SetOp;
3417 pathnode->path.parent = rel;
3418 pathnode->path.pathtarget = rel->reltarget;
3419 /* For now, assume we are above any joins, so no parameterization */
3420 pathnode->path.param_info = NULL;
3421 pathnode->path.parallel_aware = false;
3422 pathnode->path.parallel_safe = rel->consider_parallel &&
3423 leftpath->parallel_safe && rightpath->parallel_safe;
3424 pathnode->path.parallel_workers =
3425 leftpath->parallel_workers + rightpath->parallel_workers;
3426 /* SetOp preserves the input sort order if in sort mode */
3427 pathnode->path.pathkeys =
3428 (strategy == SETOP_SORTED) ? leftpath->pathkeys : NIL;
3429
3430 pathnode->leftpath = leftpath;
3431 pathnode->rightpath = rightpath;
3432 pathnode->cmd = cmd;
3433 pathnode->strategy = strategy;
3434 pathnode->groupList = groupList;
3435 pathnode->numGroups = numGroups;
3436
3437 /*
3438 * Compute cost estimates. As things stand, we end up with the same total
3439 * cost in this node for sort and hash methods, but different startup
3440 * costs. This could be refined perhaps, but it'll do for now.
3441 */
3442 pathnode->path.disabled_nodes =
3443 leftpath->disabled_nodes + rightpath->disabled_nodes;
3444 if (strategy == SETOP_SORTED)
3445 {
3446 /*
3447 * In sorted mode, we can emit output incrementally. Charge one
3448 * cpu_operator_cost per comparison per input tuple. Like cost_group,
3449 * we assume all columns get compared at most of the tuples.
3450 */
3451 pathnode->path.startup_cost =
3452 leftpath->startup_cost + rightpath->startup_cost;
3453 pathnode->path.total_cost =
3454 leftpath->total_cost + rightpath->total_cost +
3455 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3456
3457 /*
3458 * Also charge a small amount per extracted tuple. Like cost_sort,
3459 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3460 * qual-checking or projection.
3461 */
3462 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3463 }
3464 else
3465 {
3466 Size hashtablesize;
3467
3468 /*
3469 * In hashed mode, we must read all the input before we can emit
3470 * anything. Also charge comparison costs to represent the cost of
3471 * hash table lookups.
3472 */
3473 pathnode->path.startup_cost =
3474 leftpath->total_cost + rightpath->total_cost +
3475 cpu_operator_cost * (leftpath->rows + rightpath->rows) * list_length(groupList);
3476 pathnode->path.total_cost = pathnode->path.startup_cost;
3477
3478 /*
3479 * Also charge a small amount per extracted tuple. Like cost_sort,
3480 * charge only operator cost not cpu_tuple_cost, since SetOp does no
3481 * qual-checking or projection.
3482 */
3483 pathnode->path.total_cost += cpu_operator_cost * outputRows;
3484
3485 /*
3486 * Mark the path as disabled if enable_hashagg is off. While this
3487 * isn't exactly a HashAgg node, it seems close enough to justify
3488 * letting that switch control it.
3489 */
3490 if (!enable_hashagg)
3491 pathnode->path.disabled_nodes++;
3492
3493 /*
3494 * Also disable if it doesn't look like the hashtable will fit into
3495 * hash_mem. (Note: reject on equality, to ensure that an estimate of
3496 * SIZE_MAX disables hashing regardless of the hash_mem limit.)
3497 */
3498 hashtablesize = EstimateSetOpHashTableSpace(numGroups,
3499 leftpath->pathtarget->width);
3500 if (hashtablesize >= get_hash_memory_limit())
3501 pathnode->path.disabled_nodes++;
3502 }
3503 pathnode->path.rows = outputRows;
3504
3505 return pathnode;
3506}
3507
3508/*
3509 * create_recursiveunion_path
3510 * Creates a pathnode that represents a recursive UNION node
3511 *
3512 * 'rel' is the parent relation associated with the result
3513 * 'leftpath' is the source of data for the non-recursive term
3514 * 'rightpath' is the source of data for the recursive term
3515 * 'target' is the PathTarget to be computed
3516 * 'distinctList' is a list of SortGroupClause's representing the grouping
3517 * 'wtParam' is the ID of Param representing work table
3518 * 'numGroups' is the estimated number of groups
3519 *
3520 * For recursive UNION ALL, distinctList is empty and numGroups is zero
3521 */
3524 RelOptInfo *rel,
3525 Path *leftpath,
3526 Path *rightpath,
3527 PathTarget *target,
3528 List *distinctList,
3529 int wtParam,
3530 double numGroups)
3531{
3533
3534 pathnode->path.pathtype = T_RecursiveUnion;
3535 pathnode->path.parent = rel;
3536 pathnode->path.pathtarget = target;
3537 /* For now, assume we are above any joins, so no parameterization */
3538 pathnode->path.param_info = NULL;
3539 pathnode->path.parallel_aware = false;
3540 pathnode->path.parallel_safe = rel->consider_parallel &&
3541 leftpath->parallel_safe && rightpath->parallel_safe;
3542 /* Foolish, but we'll do it like joins for now: */
3543 pathnode->path.parallel_workers = leftpath->parallel_workers;
3544 /* RecursiveUnion result is always unsorted */
3545 pathnode->path.pathkeys = NIL;
3546
3547 pathnode->leftpath = leftpath;
3548 pathnode->rightpath = rightpath;
3549 pathnode->distinctList = distinctList;
3550 pathnode->wtParam = wtParam;
3551 pathnode->numGroups = numGroups;
3552
3553 cost_recursive_union(&pathnode->path, leftpath, rightpath);
3554
3555 return pathnode;
3556}
3557
3558/*
3559 * create_lockrows_path
3560 * Creates a pathnode that represents acquiring row locks
3561 *
3562 * 'rel' is the parent relation associated with the result
3563 * 'subpath' is the path representing the source of data
3564 * 'rowMarks' is a list of PlanRowMark's
3565 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3566 */
3569 Path *subpath, List *rowMarks, int epqParam)
3570{
3571 LockRowsPath *pathnode = makeNode(LockRowsPath);
3572
3573 pathnode->path.pathtype = T_LockRows;
3574 pathnode->path.parent = rel;
3575 /* LockRows doesn't project, so use source path's pathtarget */
3576 pathnode->path.pathtarget = subpath->pathtarget;
3577 /* For now, assume we are above any joins, so no parameterization */
3578 pathnode->path.param_info = NULL;
3579 pathnode->path.parallel_aware = false;
3580 pathnode->path.parallel_safe = false;
3581 pathnode->path.parallel_workers = 0;
3582 pathnode->path.rows = subpath->rows;
3583
3584 /*
3585 * The result cannot be assumed sorted, since locking might cause the sort
3586 * key columns to be replaced with new values.
3587 */
3588 pathnode->path.pathkeys = NIL;
3589
3590 pathnode->subpath = subpath;
3591 pathnode->rowMarks = rowMarks;
3592 pathnode->epqParam = epqParam;
3593
3594 /*
3595 * We should charge something extra for the costs of row locking and
3596 * possible refetches, but it's hard to say how much. For now, use
3597 * cpu_tuple_cost per row.
3598 */
3599 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3600 pathnode->path.startup_cost = subpath->startup_cost;
3601 pathnode->path.total_cost = subpath->total_cost +
3602 cpu_tuple_cost * subpath->rows;
3603
3604 return pathnode;
3605}
3606
3607/*
3608 * create_modifytable_path
3609 * Creates a pathnode that represents performing INSERT/UPDATE/DELETE/MERGE
3610 * mods
3611 *
3612 * 'rel' is the parent relation associated with the result
3613 * 'subpath' is a Path producing source data
3614 * 'operation' is the operation type
3615 * 'canSetTag' is true if we set the command tag/es_processed
3616 * 'nominalRelation' is the parent RT index for use of EXPLAIN
3617 * 'rootRelation' is the partitioned/inherited table root RTI, or 0 if none
3618 * 'resultRelations' is an integer list of actual RT indexes of target rel(s)
3619 * 'updateColnosLists' is a list of UPDATE target column number lists
3620 * (one sublist per rel); or NIL if not an UPDATE
3621 * 'withCheckOptionLists' is a list of WCO lists (one per rel)
3622 * 'returningLists' is a list of RETURNING tlists (one per rel)
3623 * 'rowMarks' is a list of PlanRowMarks (non-locking only)
3624 * 'onconflict' is the ON CONFLICT clause, or NULL
3625 * 'epqParam' is the ID of Param for EvalPlanQual re-eval
3626 * 'mergeActionLists' is a list of lists of MERGE actions (one per rel)
3627 * 'mergeJoinConditions' is a list of join conditions for MERGE (one per rel)
3628 */
3631 Path *subpath,
3632 CmdType operation, bool canSetTag,
3633 Index nominalRelation, Index rootRelation,
3634 List *resultRelations,
3635 List *updateColnosLists,
3636 List *withCheckOptionLists, List *returningLists,
3637 List *rowMarks, OnConflictExpr *onconflict,
3638 List *mergeActionLists, List *mergeJoinConditions,
3639 int epqParam)
3640{
3642
3643 Assert(operation == CMD_MERGE ||
3644 (operation == CMD_UPDATE ?
3645 list_length(resultRelations) == list_length(updateColnosLists) :
3646 updateColnosLists == NIL));
3647 Assert(withCheckOptionLists == NIL ||
3648 list_length(resultRelations) == list_length(withCheckOptionLists));
3649 Assert(returningLists == NIL ||
3650 list_length(resultRelations) == list_length(returningLists));
3651
3652 pathnode->path.pathtype = T_ModifyTable;
3653 pathnode->path.parent = rel;
3654 /* pathtarget is not interesting, just make it minimally valid */
3655 pathnode->path.pathtarget = rel->reltarget;
3656 /* For now, assume we are above any joins, so no parameterization */
3657 pathnode->path.param_info = NULL;
3658 pathnode->path.parallel_aware = false;
3659 pathnode->path.parallel_safe = false;
3660 pathnode->path.parallel_workers = 0;
3661 pathnode->path.pathkeys = NIL;
3662
3663 /*
3664 * Compute cost & rowcount as subpath cost & rowcount (if RETURNING)
3665 *
3666 * Currently, we don't charge anything extra for the actual table
3667 * modification work, nor for the WITH CHECK OPTIONS or RETURNING
3668 * expressions if any. It would only be window dressing, since
3669 * ModifyTable is always a top-level node and there is no way for the
3670 * costs to change any higher-level planning choices. But we might want
3671 * to make it look better sometime.
3672 */
3673 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3674 pathnode->path.startup_cost = subpath->startup_cost;
3675 pathnode->path.total_cost = subpath->total_cost;
3676 if (returningLists != NIL)
3677 {
3678 pathnode->path.rows = subpath->rows;
3679
3680 /*
3681 * Set width to match the subpath output. XXX this is totally wrong:
3682 * we should return an average of the RETURNING tlist widths. But
3683 * it's what happened historically, and improving it is a task for
3684 * another day. (Again, it's mostly window dressing.)
3685 */
3686 pathnode->path.pathtarget->width = subpath->pathtarget->width;
3687 }
3688 else
3689 {
3690 pathnode->path.rows = 0;
3691 pathnode->path.pathtarget->width = 0;
3692 }
3693
3694 pathnode->subpath = subpath;
3695 pathnode->operation = operation;
3696 pathnode->canSetTag = canSetTag;
3697 pathnode->nominalRelation = nominalRelation;
3698 pathnode->rootRelation = rootRelation;
3699 pathnode->resultRelations = resultRelations;
3700 pathnode->updateColnosLists = updateColnosLists;
3701 pathnode->withCheckOptionLists = withCheckOptionLists;
3702 pathnode->returningLists = returningLists;
3703 pathnode->rowMarks = rowMarks;
3704 pathnode->onconflict = onconflict;
3705 pathnode->epqParam = epqParam;
3706 pathnode->mergeActionLists = mergeActionLists;
3707 pathnode->mergeJoinConditions = mergeJoinConditions;
3708
3709 return pathnode;
3710}
3711
3712/*
3713 * create_limit_path
3714 * Creates a pathnode that represents performing LIMIT/OFFSET
3715 *
3716 * In addition to providing the actual OFFSET and LIMIT expressions,
3717 * the caller must provide estimates of their values for costing purposes.
3718 * The estimates are as computed by preprocess_limit(), ie, 0 represents
3719 * the clause not being present, and -1 means it's present but we could
3720 * not estimate its value.
3721 *
3722 * 'rel' is the parent relation associated with the result
3723 * 'subpath' is the path representing the source of data
3724 * 'limitOffset' is the actual OFFSET expression, or NULL
3725 * 'limitCount' is the actual LIMIT expression, or NULL
3726 * 'offset_est' is the estimated value of the OFFSET expression
3727 * 'count_est' is the estimated value of the LIMIT expression
3728 */
3729LimitPath *
3731 Path *subpath,
3732 Node *limitOffset, Node *limitCount,
3733 LimitOption limitOption,
3734 int64 offset_est, int64 count_est)
3735{
3736 LimitPath *pathnode = makeNode(LimitPath);
3737
3738 pathnode->path.pathtype = T_Limit;
3739 pathnode->path.parent = rel;
3740 /* Limit doesn't project, so use source path's pathtarget */
3741 pathnode->path.pathtarget = subpath->pathtarget;
3742 /* For now, assume we are above any joins, so no parameterization */
3743 pathnode->path.param_info = NULL;
3744 pathnode->path.parallel_aware = false;
3745 pathnode->path.parallel_safe = rel->consider_parallel &&
3746 subpath->parallel_safe;
3747 pathnode->path.parallel_workers = subpath->parallel_workers;
3748 pathnode->path.rows = subpath->rows;
3749 pathnode->path.disabled_nodes = subpath->disabled_nodes;
3750 pathnode->path.startup_cost = subpath->startup_cost;
3751 pathnode->path.total_cost = subpath->total_cost;
3752 pathnode->path.pathkeys = subpath->pathkeys;
3753 pathnode->subpath = subpath;
3754 pathnode->limitOffset = limitOffset;
3755 pathnode->limitCount = limitCount;
3756 pathnode->limitOption = limitOption;
3757
3758 /*
3759 * Adjust the output rows count and costs according to the offset/limit.
3760 */
3762 &pathnode->path.startup_cost,
3763 &pathnode->path.total_cost,
3764 offset_est, count_est);
3765
3766 return pathnode;
3767}
3768
3769/*
3770 * adjust_limit_rows_costs
3771 * Adjust the size and cost estimates for a LimitPath node according to the
3772 * offset/limit.
3773 *
3774 * This is only a cosmetic issue if we are at top level, but if we are
3775 * building a subquery then it's important to report correct info to the outer
3776 * planner.
3777 *
3778 * When the offset or count couldn't be estimated, use 10% of the estimated
3779 * number of rows emitted from the subpath.
3780 *
3781 * XXX we don't bother to add eval costs of the offset/limit expressions
3782 * themselves to the path costs. In theory we should, but in most cases those
3783 * expressions are trivial and it's just not worth the trouble.
3784 */
3785void
3786adjust_limit_rows_costs(double *rows, /* in/out parameter */
3787 Cost *startup_cost, /* in/out parameter */
3788 Cost *total_cost, /* in/out parameter */
3789 int64 offset_est,
3790 int64 count_est)
3791{
3792 double input_rows = *rows;
3793 Cost input_startup_cost = *startup_cost;
3794 Cost input_total_cost = *total_cost;
3795
3796 if (offset_est != 0)
3797 {
3798 double offset_rows;
3799
3800 if (offset_est > 0)
3801 offset_rows = (double) offset_est;
3802 else
3803 offset_rows = clamp_row_est(input_rows * 0.10);
3804 if (offset_rows > *rows)
3805 offset_rows = *rows;
3806 if (input_rows > 0)
3807 *startup_cost +=
3808 (input_total_cost - input_startup_cost)
3809 * offset_rows / input_rows;
3810 *rows -= offset_rows;
3811 if (*rows < 1)
3812 *rows = 1;
3813 }
3814
3815 if (count_est != 0)
3816 {
3817 double count_rows;
3818
3819 if (count_est > 0)
3820 count_rows = (double) count_est;
3821 else
3822 count_rows = clamp_row_est(input_rows * 0.10);
3823 if (count_rows > *rows)
3824 count_rows = *rows;
3825 if (input_rows > 0)
3826 *total_cost = *startup_cost +
3827 (input_total_cost - input_startup_cost)
3828 * count_rows / input_rows;
3829 *rows = count_rows;
3830 if (*rows < 1)
3831 *rows = 1;
3832 }
3833}
3834
3835
3836/*
3837 * reparameterize_path
3838 * Attempt to modify a Path to have greater parameterization
3839 *
3840 * We use this to attempt to bring all child paths of an appendrel to the
3841 * same parameterization level, ensuring that they all enforce the same set
3842 * of join quals (and thus that that parameterization can be attributed to
3843 * an append path built from such paths). Currently, only a few path types
3844 * are supported here, though more could be added at need. We return NULL
3845 * if we can't reparameterize the given path.
3846 *
3847 * Note: we intentionally do not pass created paths to add_path(); it would
3848 * possibly try to delete them on the grounds of being cost-inferior to the
3849 * paths they were made from, and we don't want that. Paths made here are
3850 * not necessarily of general-purpose usefulness, but they can be useful
3851 * as members of an append path.
3852 */
3853Path *
3855 Relids required_outer,
3856 double loop_count)
3857{
3858 RelOptInfo *rel = path->parent;
3859
3860 /* Can only increase, not decrease, path's parameterization */
3861 if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
3862 return NULL;
3863 switch (path->pathtype)
3864 {
3865 case T_SeqScan:
3866 return create_seqscan_path(root, rel, required_outer, 0);
3867 case T_SampleScan:
3868 return (Path *) create_samplescan_path(root, rel, required_outer);
3869 case T_IndexScan:
3870 case T_IndexOnlyScan:
3871 {
3872 IndexPath *ipath = (IndexPath *) path;
3873 IndexPath *newpath = makeNode(IndexPath);
3874
3875 /*
3876 * We can't use create_index_path directly, and would not want
3877 * to because it would re-compute the indexqual conditions
3878 * which is wasted effort. Instead we hack things a bit:
3879 * flat-copy the path node, revise its param_info, and redo
3880 * the cost estimate.
3881 */
3882 memcpy(newpath, ipath, sizeof(IndexPath));
3883 newpath->path.param_info =
3884 get_baserel_parampathinfo(root, rel, required_outer);
3885 cost_index(newpath, root, loop_count, false);
3886 return (Path *) newpath;
3887 }
3888 case T_BitmapHeapScan:
3889 {
3890 BitmapHeapPath *bpath = (BitmapHeapPath *) path;
3891
3893 rel,
3894 bpath->bitmapqual,
3895 required_outer,
3896 loop_count, 0);
3897 }
3898 case T_SubqueryScan:
3899 {
3900 SubqueryScanPath *spath = (SubqueryScanPath *) path;
3901 Path *subpath = spath->subpath;
3902 bool trivial_pathtarget;
3903
3904 /*
3905 * If existing node has zero extra cost, we must have decided
3906 * its target is trivial. (The converse is not true, because
3907 * it might have a trivial target but quals to enforce; but in
3908 * that case the new node will too, so it doesn't matter
3909 * whether we get the right answer here.)
3910 */
3911 trivial_pathtarget =
3912 (subpath->total_cost == spath->path.total_cost);
3913
3915 rel,
3916 subpath,
3917 trivial_pathtarget,
3918 spath->path.pathkeys,
3919 required_outer);
3920 }
3921 case T_Result:
3922 /* Supported only for RTE_RESULT scan paths */
3923 if (IsA(path, Path))
3924 return create_resultscan_path(root, rel, required_outer);
3925 break;
3926 case T_Append:
3927 {
3928 AppendPath *apath = (AppendPath *) path;
3929 List *childpaths = NIL;
3930 List *partialpaths = NIL;
3931 int i;
3932 ListCell *lc;
3933
3934 /* Reparameterize the children */
3935 i = 0;
3936 foreach(lc, apath->subpaths)
3937 {
3938 Path *spath = (Path *) lfirst(lc);
3939
3940 spath = reparameterize_path(root, spath,
3941 required_outer,
3942 loop_count);
3943 if (spath == NULL)
3944 return NULL;
3945 /* We have to re-split the regular and partial paths */
3946 if (i < apath->first_partial_path)
3947 childpaths = lappend(childpaths, spath);
3948 else
3949 partialpaths = lappend(partialpaths, spath);
3950 i++;
3951 }
3952 return (Path *)
3953 create_append_path(root, rel, childpaths, partialpaths,
3954 apath->path.pathkeys, required_outer,
3955 apath->path.parallel_workers,
3956 apath->path.parallel_aware,
3957 -1);
3958 }
3959 case T_Material:
3960 {
3961 MaterialPath *mpath = (MaterialPath *) path;
3962 Path *spath = mpath->subpath;
3963
3964 spath = reparameterize_path(root, spath,
3965 required_outer,
3966 loop_count);
3967 if (spath == NULL)
3968 return NULL;
3969 return (Path *) create_material_path(rel, spath);
3970 }
3971 case T_Memoize:
3972 {
3973 MemoizePath *mpath = (MemoizePath *) path;
3974 Path *spath = mpath->subpath;
3975
3976 spath = reparameterize_path(root, spath,
3977 required_outer,
3978 loop_count);
3979 if (spath == NULL)
3980 return NULL;
3981 return (Path *) create_memoize_path(root, rel,
3982 spath,
3983 mpath->param_exprs,
3984 mpath->hash_operators,
3985 mpath->singlerow,
3986 mpath->binary_mode,
3987 mpath->est_calls);
3988 }
3989 default:
3990 break;
3991 }
3992 return NULL;
3993}
3994
3995/*
3996 * reparameterize_path_by_child
3997 * Given a path parameterized by the parent of the given child relation,
3998 * translate the path to be parameterized by the given child relation.
3999 *
4000 * Most fields in the path are not changed, but any expressions must be
4001 * adjusted to refer to the correct varnos, and any subpaths must be
4002 * recursively reparameterized. Other fields that refer to specific relids
4003 * also need adjustment.
4004 *
4005 * The cost, number of rows, width and parallel path properties depend upon
4006 * path->parent, which does not change during the translation. So we need
4007 * not change those.
4008 *
4009 * Currently, only a few path types are supported here, though more could be
4010 * added at need. We return NULL if we can't reparameterize the given path.
4011 *
4012 * Note that this function can change referenced RangeTblEntries, RelOptInfos
4013 * and IndexOptInfos as well as the Path structures. Therefore, it's only safe
4014 * to call during create_plan(), when we have made a final choice of which Path
4015 * to use for each RangeTblEntry/RelOptInfo/IndexOptInfo.
4016 *
4017 * Keep this code in sync with path_is_reparameterizable_by_child()!
4018 */
4019Path *
4021 RelOptInfo *child_rel)
4022{
4023 Path *new_path;
4024 ParamPathInfo *new_ppi;
4025 ParamPathInfo *old_ppi;
4026 Relids required_outer;
4027
4028#define ADJUST_CHILD_ATTRS(node) \
4029 ((node) = (void *) adjust_appendrel_attrs_multilevel(root, \
4030 (Node *) (node), \
4031 child_rel, \
4032 child_rel->top_parent))
4033
4034#define REPARAMETERIZE_CHILD_PATH(path) \
4035do { \
4036 (path) = reparameterize_path_by_child(root, (path), child_rel); \
4037 if ((path) == NULL) \
4038 return NULL; \
4039} while(0)
4040
4041#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist) \
4042do { \
4043 if ((pathlist) != NIL) \
4044 { \
4045 (pathlist) = reparameterize_pathlist_by_child(root, (pathlist), \
4046 child_rel); \
4047 if ((pathlist) == NIL) \
4048 return NULL; \
4049 } \
4050} while(0)
4051
4052 /*
4053 * If the path is not parameterized by the parent of the given relation,
4054 * it doesn't need reparameterization.
4055 */
4056 if (!path->param_info ||
4057 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4058 return path;
4059
4060 /*
4061 * If possible, reparameterize the given path.
4062 *
4063 * This function is currently only applied to the inner side of a nestloop
4064 * join that is being partitioned by the partitionwise-join code. Hence,
4065 * we need only support path types that plausibly arise in that context.
4066 * (In particular, supporting sorted path types would be a waste of code
4067 * and cycles: even if we translated them here, they'd just lose in
4068 * subsequent cost comparisons.) If we do see an unsupported path type,
4069 * that just means we won't be able to generate a partitionwise-join plan
4070 * using that path type.
4071 */
4072 switch (nodeTag(path))
4073 {
4074 case T_Path:
4075 new_path = path;
4076 ADJUST_CHILD_ATTRS(new_path->parent->baserestrictinfo);
4077 if (path->pathtype == T_SampleScan)
4078 {
4079 Index scan_relid = path->parent->relid;
4080 RangeTblEntry *rte;
4081
4082 /* it should be a base rel with a tablesample clause... */
4083 Assert(scan_relid > 0);
4084 rte = planner_rt_fetch(scan_relid, root);
4085 Assert(rte->rtekind == RTE_RELATION);
4086 Assert(rte->tablesample != NULL);
4087
4089 }
4090 break;
4091
4092 case T_IndexPath:
4093 {
4094 IndexPath *ipath = (IndexPath *) path;
4095
4098 new_path = (Path *) ipath;
4099 }
4100 break;
4101
4102 case T_BitmapHeapPath:
4103 {
4104 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4105
4106 ADJUST_CHILD_ATTRS(bhpath->path.parent->baserestrictinfo);
4108 new_path = (Path *) bhpath;
4109 }
4110 break;
4111
4112 case T_BitmapAndPath:
4113 {
4114 BitmapAndPath *bapath = (BitmapAndPath *) path;
4115
4117 new_path = (Path *) bapath;
4118 }
4119 break;
4120
4121 case T_BitmapOrPath:
4122 {
4123 BitmapOrPath *bopath = (BitmapOrPath *) path;
4124
4126 new_path = (Path *) bopath;
4127 }
4128 break;
4129
4130 case T_ForeignPath:
4131 {
4132 ForeignPath *fpath = (ForeignPath *) path;
4134
4135 ADJUST_CHILD_ATTRS(fpath->path.parent->baserestrictinfo);
4136 if (fpath->fdw_outerpath)
4138 if (fpath->fdw_restrictinfo)
4140
4141 /* Hand over to FDW if needed. */
4142 rfpc_func =
4143 path->parent->fdwroutine->ReparameterizeForeignPathByChild;
4144 if (rfpc_func)
4145 fpath->fdw_private = rfpc_func(root, fpath->fdw_private,
4146 child_rel);
4147 new_path = (Path *) fpath;
4148 }
4149 break;
4150
4151 case T_CustomPath:
4152 {
4153 CustomPath *cpath = (CustomPath *) path;
4154
4155 ADJUST_CHILD_ATTRS(cpath->path.parent->baserestrictinfo);
4157 if (cpath->custom_restrictinfo)
4159 if (cpath->methods &&
4161 cpath->custom_private =
4163 cpath->custom_private,
4164 child_rel);
4165 new_path = (Path *) cpath;
4166 }
4167 break;
4168
4169 case T_NestPath:
4170 {
4171 NestPath *npath = (NestPath *) path;
4172 JoinPath *jpath = (JoinPath *) npath;
4173
4177 new_path = (Path *) npath;
4178 }
4179 break;
4180
4181 case T_MergePath:
4182 {
4183 MergePath *mpath = (MergePath *) path;
4184 JoinPath *jpath = (JoinPath *) mpath;
4185
4190 new_path = (Path *) mpath;
4191 }
4192 break;
4193
4194 case T_HashPath:
4195 {
4196 HashPath *hpath = (HashPath *) path;
4197 JoinPath *jpath = (JoinPath *) hpath;
4198
4203 new_path = (Path *) hpath;
4204 }
4205 break;
4206
4207 case T_AppendPath:
4208 {
4209 AppendPath *apath = (AppendPath *) path;
4210
4212 new_path = (Path *) apath;
4213 }
4214 break;
4215
4216 case T_MaterialPath:
4217 {
4218 MaterialPath *mpath = (MaterialPath *) path;
4219
4221 new_path = (Path *) mpath;
4222 }
4223 break;
4224
4225 case T_MemoizePath:
4226 {
4227 MemoizePath *mpath = (MemoizePath *) path;
4228
4231 new_path = (Path *) mpath;
4232 }
4233 break;
4234
4235 case T_GatherPath:
4236 {
4237 GatherPath *gpath = (GatherPath *) path;
4238
4240 new_path = (Path *) gpath;
4241 }
4242 break;
4243
4244 default:
4245 /* We don't know how to reparameterize this path. */
4246 return NULL;
4247 }
4248
4249 /*
4250 * Adjust the parameterization information, which refers to the topmost
4251 * parent. The topmost parent can be multiple levels away from the given
4252 * child, hence use multi-level expression adjustment routines.
4253 */
4254 old_ppi = new_path->param_info;
4255 required_outer =
4257 child_rel,
4258 child_rel->top_parent);
4259
4260 /* If we already have a PPI for this parameterization, just return it */
4261 new_ppi = find_param_path_info(new_path->parent, required_outer);
4262
4263 /*
4264 * If not, build a new one and link it to the list of PPIs. For the same
4265 * reason as explained in mark_dummy_rel(), allocate new PPI in the same
4266 * context the given RelOptInfo is in.
4267 */
4268 if (new_ppi == NULL)
4269 {
4270 MemoryContext oldcontext;
4271 RelOptInfo *rel = path->parent;
4272
4274
4275 new_ppi = makeNode(ParamPathInfo);
4276 new_ppi->ppi_req_outer = bms_copy(required_outer);
4277 new_ppi->ppi_rows = old_ppi->ppi_rows;
4278 new_ppi->ppi_clauses = old_ppi->ppi_clauses;
4280 new_ppi->ppi_serials = bms_copy(old_ppi->ppi_serials);
4281 rel->ppilist = lappend(rel->ppilist, new_ppi);
4282
4283 MemoryContextSwitchTo(oldcontext);
4284 }
4285 bms_free(required_outer);
4286
4287 new_path->param_info = new_ppi;
4288
4289 /*
4290 * Adjust the path target if the parent of the outer relation is
4291 * referenced in the targetlist. This can happen when only the parent of
4292 * outer relation is laterally referenced in this relation.
4293 */
4294 if (bms_overlap(path->parent->lateral_relids,
4295 child_rel->top_parent_relids))
4296 {
4297 new_path->pathtarget = copy_pathtarget(new_path->pathtarget);
4298 ADJUST_CHILD_ATTRS(new_path->pathtarget->exprs);
4299 }
4300
4301 return new_path;
4302}
4303
4304/*
4305 * path_is_reparameterizable_by_child
4306 * Given a path parameterized by the parent of the given child relation,
4307 * see if it can be translated to be parameterized by the child relation.
4308 *
4309 * This must return true if and only if reparameterize_path_by_child()
4310 * would succeed on this path. Currently it's sufficient to verify that
4311 * the path and all of its subpaths (if any) are of the types handled by
4312 * that function. However, subpaths that are not parameterized can be
4313 * disregarded since they won't require translation.
4314 */
4315bool
4317{
4318#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path) \
4319do { \
4320 if (!path_is_reparameterizable_by_child(path, child_rel)) \
4321 return false; \
4322} while(0)
4323
4324#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist) \
4325do { \
4326 if (!pathlist_is_reparameterizable_by_child(pathlist, child_rel)) \
4327 return false; \
4328} while(0)
4329
4330 /*
4331 * If the path is not parameterized by the parent of the given relation,
4332 * it doesn't need reparameterization.
4333 */
4334 if (!path->param_info ||
4335 !bms_overlap(PATH_REQ_OUTER(path), child_rel->top_parent_relids))
4336 return true;
4337
4338 /*
4339 * Check that the path type is one that reparameterize_path_by_child() can
4340 * handle, and recursively check subpaths.
4341 */
4342 switch (nodeTag(path))
4343 {
4344 case T_Path:
4345 case T_IndexPath:
4346 break;
4347
4348 case T_BitmapHeapPath:
4349 {
4350 BitmapHeapPath *bhpath = (BitmapHeapPath *) path;
4351
4353 }
4354 break;
4355
4356 case T_BitmapAndPath:
4357 {
4358 BitmapAndPath *bapath = (BitmapAndPath *) path;
4359
4361 }
4362 break;
4363
4364 case T_BitmapOrPath:
4365 {
4366 BitmapOrPath *bopath = (BitmapOrPath *) path;
4367
4369 }
4370 break;
4371
4372 case T_ForeignPath:
4373 {
4374 ForeignPath *fpath = (ForeignPath *) path;
4375
4376 if (fpath->fdw_outerpath)
4378 }
4379 break;
4380
4381 case T_CustomPath:
4382 {
4383 CustomPath *cpath = (CustomPath *) path;
4384
4386 }
4387 break;
4388
4389 case T_NestPath:
4390 case T_MergePath:
4391 case T_HashPath:
4392 {
4393 JoinPath *jpath = (JoinPath *) path;
4394
4397 }
4398 break;
4399
4400 case T_AppendPath:
4401 {
4402 AppendPath *apath = (AppendPath *) path;
4403
4405 }
4406 break;
4407
4408 case T_MaterialPath:
4409 {
4410 MaterialPath *mpath = (MaterialPath *) path;
4411
4413 }
4414 break;
4415
4416 case T_MemoizePath:
4417 {
4418 MemoizePath *mpath = (MemoizePath *) path;
4419
4421 }
4422 break;
4423
4424 case T_GatherPath:
4425 {
4426 GatherPath *gpath = (GatherPath *) path;
4427
4429 }
4430 break;
4431
4432 default:
4433 /* We don't know how to reparameterize this path. */
4434 return false;
4435 }
4436
4437 return true;
4438}
4439
4440/*
4441 * reparameterize_pathlist_by_child
4442 * Helper function to reparameterize a list of paths by given child rel.
4443 *
4444 * Returns NIL to indicate failure, so pathlist had better not be NIL.
4445 */
4446static List *
4448 List *pathlist,
4449 RelOptInfo *child_rel)
4450{
4451 ListCell *lc;
4452 List *result = NIL;
4453
4454 foreach(lc, pathlist)
4455 {
4457 child_rel);
4458
4459 if (path == NULL)
4460 {
4461 list_free(result);
4462 return NIL;
4463 }
4464
4465 result = lappend(result, path);
4466 }
4467
4468 return result;
4469}
4470
4471/*
4472 * pathlist_is_reparameterizable_by_child
4473 * Helper function to check if a list of paths can be reparameterized.
4474 */
4475static bool
4477{
4478 ListCell *lc;
4479
4480 foreach(lc, pathlist)
4481 {
4482 Path *path = (Path *) lfirst(lc);
4483
4484 if (!path_is_reparameterizable_by_child(path, child_rel))
4485 return false;
4486 }
4487
4488 return true;
4489}
Datum sort(PG_FUNCTION_ARGS)
Definition: _int_op.c:198
Relids adjust_child_relids_multilevel(PlannerInfo *root, Relids relids, RelOptInfo *childrel, RelOptInfo *parentrel)
Definition: appendinfo.c:659
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
BMS_Comparison bms_subset_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:445
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1160
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:916
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:581
int bms_compare(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:183
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
BMS_Comparison
Definition: bitmapset.h:61
@ BMS_DIFFERENT
Definition: bitmapset.h:65
@ BMS_SUBSET1
Definition: bitmapset.h:63
@ BMS_EQUAL
Definition: bitmapset.h:62
@ BMS_SUBSET2
Definition: bitmapset.h:64
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:228
int64_t int64
Definition: c.h:540
#define unlikely(x)
Definition: c.h:407
unsigned int Index
Definition: c.h:624
size_t Size
Definition: c.h:615
bool is_parallel_safe(PlannerInfo *root, Node *node)
Definition: clauses.c:765
double expression_returns_set_rows(PlannerInfo *root, Node *clause)
Definition: clauses.c:301
double cpu_operator_cost
Definition: costsize.c:134
void final_cost_hashjoin(PlannerInfo *root, HashPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:4299
void final_cost_mergejoin(PlannerInfo *root, MergePath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3859
bool enable_memoize
Definition: costsize.c:155
void cost_windowagg(Path *path, PlannerInfo *root, List *windowFuncs, WindowClause *winclause, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3120
void cost_functionscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1528
void cost_material(Path *path, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples, int width)
Definition: costsize.c:2499
void cost_bitmap_heap_scan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, Path *bitmapqual, double loop_count)
Definition: costsize.c:997
void cost_tidrangescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidrangequals, ParamPathInfo *param_info)
Definition: costsize.c:1337
void cost_agg(Path *path, PlannerInfo *root, AggStrategy aggstrategy, const AggClauseCosts *aggcosts, int numGroupCols, double numGroups, List *quals, int disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, double input_width)
Definition: costsize.c:2704
void cost_sort(Path *path, PlannerInfo *root, List *pathkeys, int input_disabled_nodes, Cost input_cost, double tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:2134
void final_cost_nestloop(PlannerInfo *root, NestPath *path, JoinCostWorkspace *workspace, JoinPathExtraData *extra)
Definition: costsize.c:3371
void cost_gather_merge(GatherMergePath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double *rows)
Definition: costsize.c:459
void cost_recursive_union(Path *runion, Path *nrterm, Path *rterm)
Definition: costsize.c:1816
void cost_tablefuncscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1590
double cpu_tuple_cost
Definition: costsize.c:132
void cost_samplescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:344
void cost_gather(GatherPath *path, PlannerInfo *root, RelOptInfo *rel, ParamPathInfo *param_info, double *rows)
Definition: costsize.c:420
void cost_append(AppendPath *apath, PlannerInfo *root)
Definition: costsize.c:2240
void cost_namedtuplestorescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1740
void cost_seqscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:269
void cost_valuesscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1647
void cost_incremental_sort(Path *path, PlannerInfo *root, List *pathkeys, int presorted_keys, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples, int width, Cost comparison_cost, int sort_mem, double limit_tuples)
Definition: costsize.c:1990
void cost_qual_eval(QualCost *cost, List *quals, PlannerInfo *root)
Definition: costsize.c:4781
void cost_group(Path *path, PlannerInfo *root, int numGroupCols, double numGroups, List *quals, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double input_tuples)
Definition: costsize.c:3217
void cost_resultscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1778
void cost_bitmap_and_node(BitmapAndPath *path, PlannerInfo *root)
Definition: costsize.c:1139
void cost_tidscan(Path *path, PlannerInfo *root, RelOptInfo *baserel, List *tidquals, ParamPathInfo *param_info)
Definition: costsize.c:1232
void cost_merge_append(Path *path, PlannerInfo *root, List *pathkeys, int n_streams, int input_disabled_nodes, Cost input_startup_cost, Cost input_total_cost, double tuples)
Definition: costsize.c:2448
bool enable_hashagg
Definition: costsize.c:152
double clamp_row_est(double nrows)
Definition: costsize.c:213
void cost_subqueryscan(SubqueryScanPath *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info, bool trivial_pathtarget)
Definition: costsize.c:1447
void cost_ctescan(Path *path, PlannerInfo *root, RelOptInfo *baserel, ParamPathInfo *param_info)
Definition: costsize.c:1698
void cost_bitmap_or_node(BitmapOrPath *path, PlannerInfo *root)
Definition: costsize.c:1184
void cost_index(IndexPath *path, PlannerInfo *root, double loop_count, bool partial_path)
Definition: costsize.c:534
bool enable_incremental_sort
Definition: costsize.c:151
bool is_projection_capable_path(Path *path)
Definition: createplan.c:7217
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
bool equal(const void *a, const void *b)
Definition: equalfuncs.c:223
List *(* ReparameterizeForeignPathByChild_function)(PlannerInfo *root, List *fdw_private, RelOptInfo *child_rel)
Definition: fdwapi.h:182
int work_mem
Definition: globals.c:131
Assert(PointerIsAligned(start, uint64))
int b
Definition: isn.c:74
int a
Definition: isn.c:73
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
void list_sort(List *list, list_sort_comparator cmp)
Definition: list.c:1674
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
List * lcons(void *datum, List *list)
Definition: list.c:495
void list_free(List *list)
Definition: list.c:1546
List * list_copy_head(const List *oldlist, int len)
Definition: list.c:1593
List * list_insert_nth(List *list, int pos, void *datum)
Definition: list.c:439
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:311
void pfree(void *pointer)
Definition: mcxt.c:1594
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:753
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
size_t get_hash_memory_limit(void)
Definition: nodeHash.c:3621
Size EstimateSetOpHashTableSpace(double nentries, Size tupleWidth)
Definition: nodeSetOp.c:115
SetOpCmd
Definition: nodes.h:407
SetOpStrategy
Definition: nodes.h:415
@ SETOP_SORTED
Definition: nodes.h:416
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
double Cost
Definition: nodes.h:261
#define nodeTag(nodeptr)
Definition: nodes.h:139
double Cardinality
Definition: nodes.h:262
CmdType
Definition: nodes.h:273
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_UPDATE
Definition: nodes.h:276
AggStrategy
Definition: nodes.h:363
@ AGG_SORTED
Definition: nodes.h:365
@ AGG_HASHED
Definition: nodes.h:366
@ AGG_MIXED
Definition: nodes.h:367
@ AGG_PLAIN
Definition: nodes.h:364
AggSplit
Definition: nodes.h:385
LimitOption
Definition: nodes.h:440
#define makeNode(_type_)
Definition: nodes.h:161
JoinType
Definition: nodes.h:298
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
@ RTE_RELATION
Definition: parsenodes.h:1043
bool pathkeys_count_contained_in(List *keys1, List *keys2, int *n_common)
Definition: pathkeys.c:558
bool pathkeys_contained_in(List *keys1, List *keys2)
Definition: pathkeys.c:343
PathKeysComparison compare_pathkeys(List *keys1, List *keys2)
Definition: pathkeys.c:304
#define REPARAMETERIZE_CHILD_PATH_LIST(pathlist)
static int append_startup_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1454
#define REPARAMETERIZE_CHILD_PATH(path)
Relids calc_non_nestloop_required_outer(Path *outer_path, Path *inner_path)
Definition: pathnode.c:2242
static PathCostComparison compare_path_costs_fuzzily(Path *path1, Path *path2, double fuzz_factor)
Definition: pathnode.c:183
ForeignPath * create_foreign_upper_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2168
BitmapAndPath * create_bitmap_and_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1131
Path * create_functionscan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1877
bool path_is_reparameterizable_by_child(Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4316
MemoizePath * create_memoize_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *param_exprs, List *hash_operators, bool singlerow, bool binary_mode, Cardinality est_calls)
Definition: pathnode.c:1691
Path * create_valuesscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1929
MinMaxAggPath * create_minmaxagg_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *mmaggregates, List *quals)
Definition: pathnode.c:3240
Path * create_worktablescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2033
static bool pathlist_is_reparameterizable_by_child(List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4476
SetOpPath * create_setop_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, SetOpCmd cmd, SetOpStrategy strategy, List *groupList, double numGroups, double outputRows)
Definition: pathnode.c:3404
#define STD_FUZZ_FACTOR
Definition: pathnode.c:49
ModifyTablePath * create_modifytable_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, CmdType operation, bool canSetTag, Index nominalRelation, Index rootRelation, List *resultRelations, List *updateColnosLists, List *withCheckOptionLists, List *returningLists, List *rowMarks, OnConflictExpr *onconflict, List *mergeActionLists, List *mergeJoinConditions, int epqParam)
Definition: pathnode.c:3630
Relids calc_nestloop_required_outer(Relids outerrelids, Relids outer_paramrels, Relids innerrelids, Relids inner_paramrels)
Definition: pathnode.c:2215
IndexPath * create_index_path(PlannerInfo *root, IndexOptInfo *index, List *indexclauses, List *indexorderbys, List *indexorderbycols, List *pathkeys, ScanDirection indexscandir, bool indexonly, Relids required_outer, double loop_count, bool partial_path)
Definition: pathnode.c:1049
ProjectSetPath * create_set_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2723
ProjectionPath * create_projection_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target)
Definition: pathnode.c:2525
#define REJECT_IF_PATH_LIST_NOT_REPARAMETERIZABLE(pathlist)
TidRangePath * create_tidrangescan_path(PlannerInfo *root, RelOptInfo *rel, List *tidrangequals, Relids required_outer, int parallel_workers)
Definition: pathnode.c:1264
static List * reparameterize_pathlist_by_child(PlannerInfo *root, List *pathlist, RelOptInfo *child_rel)
Definition: pathnode.c:4447
WindowAggPath * create_windowagg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *windowFuncs, List *runCondition, WindowClause *winclause, List *qual, bool topwindow)
Definition: pathnode.c:3331
Path * reparameterize_path_by_child(PlannerInfo *root, Path *path, RelOptInfo *child_rel)
Definition: pathnode.c:4020
LockRowsPath * create_lockrows_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *rowMarks, int epqParam)
Definition: pathnode.c:3568
Path * apply_projection_to_path(PlannerInfo *root, RelOptInfo *rel, Path *path, PathTarget *target)
Definition: pathnode.c:2634
Path * create_seqscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer, int parallel_workers)
Definition: pathnode.c:983
GatherMergePath * create_gather_merge_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, List *pathkeys, Relids required_outer, double *rows)
Definition: pathnode.c:1751
HashPath * create_hashjoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, bool parallel_hash, List *restrict_clauses, Relids required_outer, List *hashclauses)
Definition: pathnode.c:2459
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:270
void add_partial_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:795
LimitPath * create_limit_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, Node *limitOffset, Node *limitCount, LimitOption limitOption, int64 offset_est, int64 count_est)
Definition: pathnode.c:3730
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1301
Path * create_namedtuplestorescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1981
SubqueryScanPath * create_subqueryscan_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, bool trivial_pathtarget, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1847
#define ADJUST_CHILD_ATTRS(node)
int compare_fractional_path_costs(Path *path1, Path *path2, double fraction)
Definition: pathnode.c:125
IncrementalSortPath * create_incremental_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, int presorted_keys, double limit_tuples)
Definition: pathnode.c:2793
PathCostComparison
Definition: pathnode.c:37
@ COSTS_EQUAL
Definition: pathnode.c:38
@ COSTS_BETTER1
Definition: pathnode.c:39
@ COSTS_BETTER2
Definition: pathnode.c:40
@ COSTS_DIFFERENT
Definition: pathnode.c:41
BitmapOrPath * create_bitmap_or_path(PlannerInfo *root, RelOptInfo *rel, List *bitmapquals)
Definition: pathnode.c:1183
GroupingSetsPath * create_groupingsets_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *having_qual, AggStrategy aggstrategy, List *rollups, const AggClauseCosts *agg_costs)
Definition: pathnode.c:3077
BitmapHeapPath * create_bitmap_heap_path(PlannerInfo *root, RelOptInfo *rel, Path *bitmapqual, Relids required_outer, double loop_count, int parallel_degree)
Definition: pathnode.c:1098
Path * create_tablefuncscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1903
#define REJECT_IF_PATH_NOT_REPARAMETERIZABLE(path)
SortPath * create_sort_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *pathkeys, double limit_tuples)
Definition: pathnode.c:2842
GroupPath * create_group_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, List *groupClause, List *qual, double numGroups)
Definition: pathnode.c:2886
ForeignPath * create_foreignscan_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2066
TidPath * create_tidscan_path(PlannerInfo *root, RelOptInfo *rel, List *tidquals, Relids required_outer)
Definition: pathnode.c:1235
#define CONSIDER_PATH_STARTUP_COST(p)
GatherPath * create_gather_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, Relids required_outer, double *rows)
Definition: pathnode.c:1803
Path * create_samplescan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:1008
MaterialPath * create_material_path(RelOptInfo *rel, Path *subpath)
Definition: pathnode.c:1658
ForeignPath * create_foreign_join_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, double rows, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer, Path *fdw_outerpath, List *fdw_restrictinfo, List *fdw_private)
Definition: pathnode.c:2114
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:461
int compare_path_costs(Path *path1, Path *path2, CostSelector criterion)
Definition: pathnode.c:70
bool add_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost startup_cost, Cost total_cost, List *pathkeys, Relids required_outer)
Definition: pathnode.c:688
static int append_total_cost_compare(const ListCell *a, const ListCell *b)
Definition: pathnode.c:1432
Path * create_resultscan_path(PlannerInfo *root, RelOptInfo *rel, Relids required_outer)
Definition: pathnode.c:2007
void adjust_limit_rows_costs(double *rows, Cost *startup_cost, Cost *total_cost, int64 offset_est, int64 count_est)
Definition: pathnode.c:3786
Path * create_ctescan_path(PlannerInfo *root, RelOptInfo *rel, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1955
UniquePath * create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, int numCols, double numGroups)
Definition: pathnode.c:2943
AggPath * create_agg_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, PathTarget *target, AggStrategy aggstrategy, AggSplit aggsplit, List *groupClause, List *qual, const AggClauseCosts *aggcosts, double numGroups)
Definition: pathnode.c:2995
bool add_partial_path_precheck(RelOptInfo *parent_rel, int disabled_nodes, Cost total_cost, List *pathkeys)
Definition: pathnode.c:921
MergePath * create_mergejoin_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer, List *mergeclauses, List *outersortkeys, List *innersortkeys, int outer_presorted_keys)
Definition: pathnode.c:2391
RecursiveUnionPath * create_recursiveunion_path(PlannerInfo *root, RelOptInfo *rel, Path *leftpath, Path *rightpath, PathTarget *target, List *distinctList, int wtParam, double numGroups)
Definition: pathnode.c:3523
GroupResultPath * create_group_result_path(PlannerInfo *root, RelOptInfo *rel, PathTarget *target, List *havingqual)
Definition: pathnode.c:1610
MergeAppendPath * create_merge_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *pathkeys, Relids required_outer)
Definition: pathnode.c:1472
Path * reparameterize_path(PlannerInfo *root, Path *path, Relids required_outer, double loop_count)
Definition: pathnode.c:3854
NestPath * create_nestloop_path(PlannerInfo *root, RelOptInfo *joinrel, JoinType jointype, JoinCostWorkspace *workspace, JoinPathExtraData *extra, Path *outer_path, Path *inner_path, List *restrict_clauses, List *pathkeys, Relids required_outer)
Definition: pathnode.c:2294
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:895
CostSelector
Definition: pathnodes.h:37
@ TOTAL_COST
Definition: pathnodes.h:38
@ STARTUP_COST
Definition: pathnodes.h:38
#define PATH_REQ_OUTER(path)
Definition: pathnodes.h:1917
#define planner_rt_fetch(rti, root)
Definition: pathnodes.h:610
@ RELOPT_BASEREL
Definition: pathnodes.h:883
PathKeysComparison
Definition: paths.h:211
@ PATHKEYS_BETTER2
Definition: paths.h:214
@ PATHKEYS_BETTER1
Definition: paths.h:213
@ PATHKEYS_DIFFERENT
Definition: paths.h:215
@ PATHKEYS_EQUAL
Definition: paths.h:212
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define linitial(l)
Definition: pg_list.h:178
tree ctl root
Definition: radixtree.h:1857
static int cmp(const chr *x, const chr *y, size_t len)
Definition: regc_locale.c:743
ParamPathInfo * get_appendrel_parampathinfo(RelOptInfo *appendrel, Relids required_outer)
Definition: relnode.c:1978
ParamPathInfo * get_joinrel_parampathinfo(PlannerInfo *root, RelOptInfo *joinrel, Path *outer_path, Path *inner_path, SpecialJoinInfo *sjinfo, Relids required_outer, List **restrict_clauses)
Definition: relnode.c:1781
ParamPathInfo * get_baserel_parampathinfo(PlannerInfo *root, RelOptInfo *baserel, Relids required_outer)
Definition: relnode.c:1667
ParamPathInfo * find_param_path_info(RelOptInfo *rel, Relids required_outer)
Definition: relnode.c:2011
Bitmapset * get_param_path_clause_serials(Path *path)
Definition: relnode.c:2032
ScanDirection
Definition: sdir.h:25
Size transitionSpace
Definition: pathnodes.h:62
Path * subpath
Definition: pathnodes.h:2484
Cardinality numGroups
Definition: pathnodes.h:2487
AggSplit aggsplit
Definition: pathnodes.h:2486
List * groupClause
Definition: pathnodes.h:2489
uint64 transitionSpace
Definition: pathnodes.h:2488
AggStrategy aggstrategy
Definition: pathnodes.h:2485
Path path
Definition: pathnodes.h:2483
List * qual
Definition: pathnodes.h:2490
int first_partial_path
Definition: pathnodes.h:2182
Cardinality limit_tuples
Definition: pathnodes.h:2183
List * subpaths
Definition: pathnodes.h:2180
List * bitmapquals
Definition: pathnodes.h:2045
Path * bitmapqual
Definition: pathnodes.h:2033
List * bitmapquals
Definition: pathnodes.h:2058
struct List *(* ReparameterizeCustomPathByChild)(PlannerInfo *root, List *custom_private, RelOptInfo *child_rel)
Definition: extensible.h:103
const struct CustomPathMethods * methods
Definition: pathnodes.h:2159
List * custom_paths
Definition: pathnodes.h:2156
List * custom_private
Definition: pathnodes.h:2158
List * custom_restrictinfo
Definition: pathnodes.h:2157
Path * fdw_outerpath
Definition: pathnodes.h:2118
List * fdw_restrictinfo
Definition: pathnodes.h:2119
List * fdw_private
Definition: pathnodes.h:2120
bool single_copy
Definition: pathnodes.h:2265
Path * subpath
Definition: pathnodes.h:2264
int num_workers
Definition: pathnodes.h:2266
List * qual
Definition: pathnodes.h:2458
List * groupClause
Definition: pathnodes.h:2457
Path * subpath
Definition: pathnodes.h:2456
Path path
Definition: pathnodes.h:2455
uint64 transitionSpace
Definition: pathnodes.h:2530
AggStrategy aggstrategy
Definition: pathnodes.h:2527
List * path_hashclauses
Definition: pathnodes.h:2382
JoinPath jpath
Definition: pathnodes.h:2381
List * indrestrictinfo
Definition: pathnodes.h:1321
List * indexclauses
Definition: pathnodes.h:1959
ScanDirection indexscandir
Definition: pathnodes.h:1962
Path path
Definition: pathnodes.h:1957
List * indexorderbycols
Definition: pathnodes.h:1961
List * indexorderbys
Definition: pathnodes.h:1960
IndexOptInfo * indexinfo
Definition: pathnodes.h:1958
SpecialJoinInfo * sjinfo
Definition: pathnodes.h:3499
Path * outerjoinpath
Definition: pathnodes.h:2296
Path * innerjoinpath
Definition: pathnodes.h:2297
JoinType jointype
Definition: pathnodes.h:2291
bool inner_unique
Definition: pathnodes.h:2293
List * joinrestrictinfo
Definition: pathnodes.h:2299
Path path
Definition: pathnodes.h:2628
Path * subpath
Definition: pathnodes.h:2629
LimitOption limitOption
Definition: pathnodes.h:2632
Node * limitOffset
Definition: pathnodes.h:2630
Node * limitCount
Definition: pathnodes.h:2631
Definition: pg_list.h:54
Path * subpath
Definition: pathnodes.h:2590
List * rowMarks
Definition: pathnodes.h:2591
Path * subpath
Definition: pathnodes.h:2230
Cardinality est_calls
Definition: pathnodes.h:2251
bool singlerow
Definition: pathnodes.h:2244
List * hash_operators
Definition: pathnodes.h:2242
uint32 est_entries
Definition: pathnodes.h:2248
bool binary_mode
Definition: pathnodes.h:2246
double est_hit_ratio
Definition: pathnodes.h:2253
Cardinality est_unique_keys
Definition: pathnodes.h:2252
Path * subpath
Definition: pathnodes.h:2241
List * param_exprs
Definition: pathnodes.h:2243
Cardinality limit_tuples
Definition: pathnodes.h:2205
List * outersortkeys
Definition: pathnodes.h:2362
List * innersortkeys
Definition: pathnodes.h:2363
JoinPath jpath
Definition: pathnodes.h:2360
int outer_presorted_keys
Definition: pathnodes.h:2364
List * path_mergeclauses
Definition: pathnodes.h:2361
List * quals
Definition: pathnodes.h:2540
List * mmaggregates
Definition: pathnodes.h:2539
List * returningLists
Definition: pathnodes.h:2613
List * resultRelations
Definition: pathnodes.h:2610
List * withCheckOptionLists
Definition: pathnodes.h:2612
List * mergeJoinConditions
Definition: pathnodes.h:2619
List * updateColnosLists
Definition: pathnodes.h:2611
OnConflictExpr * onconflict
Definition: pathnodes.h:2615
CmdType operation
Definition: pathnodes.h:2606
Index rootRelation
Definition: pathnodes.h:2609
Index nominalRelation
Definition: pathnodes.h:2608
List * mergeActionLists
Definition: pathnodes.h:2617
JoinPath jpath
Definition: pathnodes.h:2314
Definition: nodes.h:135
Cardinality ppi_rows
Definition: pathnodes.h:1827
List * ppi_clauses
Definition: pathnodes.h:1828
Bitmapset * ppi_serials
Definition: pathnodes.h:1829
Relids ppi_req_outer
Definition: pathnodes.h:1826
List * exprs
Definition: pathnodes.h:1780
QualCost cost
Definition: pathnodes.h:1786
List * pathkeys
Definition: pathnodes.h:1913
NodeTag pathtype
Definition: pathnodes.h:1873
Cardinality rows
Definition: pathnodes.h:1907
Cost startup_cost
Definition: pathnodes.h:1909
int parallel_workers
Definition: pathnodes.h:1904
int disabled_nodes
Definition: pathnodes.h:1908
Cost total_cost
Definition: pathnodes.h:1910
bool parallel_aware
Definition: pathnodes.h:1900
bool parallel_safe
Definition: pathnodes.h:1902
Path * subpath
Definition: pathnodes.h:2416
Path * subpath
Definition: pathnodes.h:2404
Cost per_tuple
Definition: pathnodes.h:48
Cost startup
Definition: pathnodes.h:47
struct TableSampleClause * tablesample
Definition: parsenodes.h:1129
RTEKind rtekind
Definition: parsenodes.h:1078
Cardinality numGroups
Definition: pathnodes.h:2581
bool consider_param_startup
Definition: pathnodes.h:941
List * ppilist
Definition: pathnodes.h:955
Relids relids
Definition: pathnodes.h:927
struct PathTarget * reltarget
Definition: pathnodes.h:949
bool consider_parallel
Definition: pathnodes.h:943
Relids top_parent_relids
Definition: pathnodes.h:1078
Relids lateral_relids
Definition: pathnodes.h:968
List * cheapest_parameterized_paths
Definition: pathnodes.h:959
List * pathlist
Definition: pathnodes.h:954
RelOptKind reloptkind
Definition: pathnodes.h:921
struct Path * cheapest_startup_path
Definition: pathnodes.h:957
struct Path * cheapest_total_path
Definition: pathnodes.h:958
bool consider_startup
Definition: pathnodes.h:939
List * partial_pathlist
Definition: pathnodes.h:956
int rinfo_serial
Definition: pathnodes.h:2864
Cardinality numGroups
Definition: pathnodes.h:2514
List * gsets
Definition: pathnodes.h:2512
bool is_hashed
Definition: pathnodes.h:2516
Path * rightpath
Definition: pathnodes.h:2564
Cardinality numGroups
Definition: pathnodes.h:2568
Path * leftpath
Definition: pathnodes.h:2563
SetOpCmd cmd
Definition: pathnodes.h:2565
Path path
Definition: pathnodes.h:2562
SetOpStrategy strategy
Definition: pathnodes.h:2566
List * groupList
Definition: pathnodes.h:2567
Path path
Definition: pathnodes.h:2429
Path * subpath
Definition: pathnodes.h:2430
List * tidquals
Definition: pathnodes.h:2072
Path path
Definition: pathnodes.h:2071
List * tidrangequals
Definition: pathnodes.h:2084
Path * subpath
Definition: pathnodes.h:2470
List * runCondition
Definition: pathnodes.h:2552
Path * subpath
Definition: pathnodes.h:2549
WindowClause * winclause
Definition: pathnodes.h:2550
Definition: type.h:96
PathTarget * copy_pathtarget(PathTarget *src)
Definition: tlist.c:657