PostgreSQL Source Code git master
prepjointree.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * prepjointree.c
4 * Planner preprocessing for subqueries and join tree manipulation.
5 *
6 * NOTE: the intended sequence for invoking these operations is
7 * preprocess_relation_rtes
8 * replace_empty_jointree
9 * pull_up_sublinks
10 * preprocess_function_rtes
11 * pull_up_subqueries
12 * flatten_simple_union_all
13 * do expression preprocessing (including flattening JOIN alias vars)
14 * reduce_outer_joins
15 * remove_useless_result_rtes
16 *
17 *
18 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
19 * Portions Copyright (c) 1994, Regents of the University of California
20 *
21 *
22 * IDENTIFICATION
23 * src/backend/optimizer/prep/prepjointree.c
24 *
25 *-------------------------------------------------------------------------
26 */
27#include "postgres.h"
28
29#include "access/table.h"
30#include "catalog/pg_type.h"
31#include "funcapi.h"
32#include "miscadmin.h"
33#include "nodes/makefuncs.h"
35#include "nodes/nodeFuncs.h"
36#include "optimizer/clauses.h"
37#include "optimizer/optimizer.h"
39#include "optimizer/plancat.h"
40#include "optimizer/prep.h"
41#include "optimizer/subselect.h"
42#include "optimizer/tlist.h"
44#include "parser/parsetree.h"
47#include "utils/rel.h"
48
49
50typedef struct nullingrel_info
51{
52 /*
53 * For each leaf RTE, nullingrels[rti] is the set of relids of outer joins
54 * that potentially null that RTE.
55 */
57 /* Length of range table (maximum index in nullingrels[]) */
58 int rtlength; /* used only for assertion checks */
60
61/* Options for wrapping an expression for identification purposes */
63{
64 REPLACE_WRAP_NONE, /* no expressions need to be wrapped */
65 REPLACE_WRAP_ALL, /* all expressions need to be wrapped */
66 REPLACE_WRAP_VARFREE, /* variable-free expressions need to be
67 * wrapped */
69
71{
73 List *targetlist; /* tlist of subquery being pulled up */
74 RangeTblEntry *target_rte; /* RTE of subquery */
75 int result_relation; /* the index of the result relation in the
76 * rewritten query */
77 Relids relids; /* relids within subquery, as numbered after
78 * pullup (set only if target_rte->lateral) */
79 nullingrel_info *nullinfo; /* per-RTE nullingrel info (set only if
80 * target_rte->lateral) */
81 bool *outer_hasSubLinks; /* -> outer query's hasSubLinks */
82 int varno; /* varno of subquery */
83 ReplaceWrapOption wrap_option; /* do we need certain outputs to be PHVs? */
84 Node **rv_cache; /* cache for results with PHVs */
86
88{
89 Relids relids; /* base relids within this subtree */
90 bool contains_outer; /* does subtree contain outer join(s)? */
91 List *sub_states; /* List of states for subtree components */
93
95{
96 Relids inner_reduced; /* OJ relids reduced to plain inner joins */
97 List *partial_reduced; /* List of partially reduced FULL joins */
99
101{
102 int full_join_rti; /* RT index of a formerly-FULL join */
103 Relids unreduced_side; /* relids in its still-nullable side */
105
107 RangeTblEntry *rte, int rt_index,
108 Relation relation);
110 Relids *relids);
112 Node **jtlink1, Relids available_rels1,
113 Node **jtlink2, Relids available_rels2);
115 JoinExpr *lowest_outer_join,
116 AppendRelInfo *containing_appendrel);
118 RangeTblEntry *rte,
119 JoinExpr *lowest_outer_join,
120 AppendRelInfo *containing_appendrel);
122 RangeTblEntry *rte);
124 int parentRTindex, Query *setOpQuery,
125 int childRToffset);
126static void make_setop_translation_list(Query *query, int newvarno,
127 AppendRelInfo *appinfo);
128static bool is_simple_subquery(PlannerInfo *root, Query *subquery,
129 RangeTblEntry *rte,
130 JoinExpr *lowest_outer_join);
132 RangeTblEntry *rte);
135 RangeTblEntry *rte,
136 AppendRelInfo *containing_appendrel);
137static bool is_simple_union_all(Query *subquery);
138static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery,
139 List *colTypes);
140static bool is_safe_append_member(Query *subquery);
142 Node *jtnode, bool restricted,
143 Relids safe_upper_varnos);
146 AppendRelInfo *containing_appendrel);
147static void replace_vars_in_jointree(Node *jtnode,
149static Node *pullup_replace_vars(Node *expr,
156static void reduce_outer_joins_pass2(Node *jtnode,
160 Relids nonnullable_rels,
161 List *forced_null_vars);
163 int rtindex, Relids relids);
165 Node **parent_quals,
166 Relids *dropped_outer_joins);
167static int get_result_relid(PlannerInfo *root, Node *jtnode);
168static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc);
169static bool find_dependent_phvs(PlannerInfo *root, int varno);
171 Node *node, int varno);
172static void substitute_phv_relids(Node *node,
173 int varno, Relids subrelids);
174static void fix_append_rel_relids(PlannerInfo *root, int varno,
175 Relids subrelids);
176static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
178static void get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels,
179 nullingrel_info *info);
180
181
182/*
183 * transform_MERGE_to_join
184 * Replace a MERGE's jointree to also include the target relation.
185 */
186void
188{
189 RangeTblEntry *joinrte;
190 JoinExpr *joinexpr;
191 bool have_action[NUM_MERGE_MATCH_KINDS];
192 JoinType jointype;
193 int joinrti;
194 List *vars;
195 RangeTblRef *rtr;
196 FromExpr *target;
197 Node *source;
198 int sourcerti;
199
200 if (parse->commandType != CMD_MERGE)
201 return;
202
203 /* XXX probably bogus */
204 vars = NIL;
205
206 /*
207 * Work out what kind of join is required. If there any WHEN NOT MATCHED
208 * BY SOURCE/TARGET actions, an outer join is required so that we process
209 * all unmatched tuples from the source and/or target relations.
210 * Otherwise, we can use an inner join.
211 */
212 have_action[MERGE_WHEN_MATCHED] = false;
213 have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] = false;
214 have_action[MERGE_WHEN_NOT_MATCHED_BY_TARGET] = false;
215
216 foreach_node(MergeAction, action, parse->mergeActionList)
217 {
218 if (action->commandType != CMD_NOTHING)
219 have_action[action->matchKind] = true;
220 }
221
222 if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE] &&
224 jointype = JOIN_FULL;
225 else if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE])
226 jointype = JOIN_LEFT;
227 else if (have_action[MERGE_WHEN_NOT_MATCHED_BY_TARGET])
228 jointype = JOIN_RIGHT;
229 else
230 jointype = JOIN_INNER;
231
232 /* Manufacture a join RTE to use. */
233 joinrte = makeNode(RangeTblEntry);
234 joinrte->rtekind = RTE_JOIN;
235 joinrte->jointype = jointype;
236 joinrte->joinmergedcols = 0;
237 joinrte->joinaliasvars = vars;
238 joinrte->joinleftcols = NIL; /* MERGE does not allow JOIN USING */
239 joinrte->joinrightcols = NIL; /* ditto */
240 joinrte->join_using_alias = NULL;
241
242 joinrte->alias = NULL;
243 joinrte->eref = makeAlias("*MERGE*", NIL);
244 joinrte->lateral = false;
245 joinrte->inh = false;
246 joinrte->inFromCl = true;
247
248 /*
249 * Add completed RTE to pstate's range table list, so that we know its
250 * index.
251 */
252 parse->rtable = lappend(parse->rtable, joinrte);
253 joinrti = list_length(parse->rtable);
254
255 /*
256 * Create a JOIN between the target and the source relation.
257 *
258 * Here the target is identified by parse->mergeTargetRelation. For a
259 * regular table, this will equal parse->resultRelation, but for a
260 * trigger-updatable view, it will be the expanded view subquery that we
261 * need to pull data from.
262 *
263 * The source relation is in parse->jointree->fromlist, but any quals in
264 * parse->jointree->quals are restrictions on the target relation (if the
265 * target relation is an auto-updatable view).
266 */
267 /* target rel, with any quals */
268 rtr = makeNode(RangeTblRef);
269 rtr->rtindex = parse->mergeTargetRelation;
270 target = makeFromExpr(list_make1(rtr), parse->jointree->quals);
271
272 /* source rel (expect exactly one -- see transformMergeStmt()) */
273 Assert(list_length(parse->jointree->fromlist) == 1);
274 source = linitial(parse->jointree->fromlist);
275
276 /*
277 * index of source rel (expect either a RangeTblRef or a JoinExpr -- see
278 * transformFromClauseItem()).
279 */
280 if (IsA(source, RangeTblRef))
281 sourcerti = ((RangeTblRef *) source)->rtindex;
282 else if (IsA(source, JoinExpr))
283 sourcerti = ((JoinExpr *) source)->rtindex;
284 else
285 {
286 elog(ERROR, "unrecognized source node type: %d",
287 (int) nodeTag(source));
288 sourcerti = 0; /* keep compiler quiet */
289 }
290
291 /* Join the source and target */
292 joinexpr = makeNode(JoinExpr);
293 joinexpr->jointype = jointype;
294 joinexpr->isNatural = false;
295 joinexpr->larg = (Node *) target;
296 joinexpr->rarg = source;
297 joinexpr->usingClause = NIL;
298 joinexpr->join_using_alias = NULL;
299 joinexpr->quals = parse->mergeJoinCondition;
300 joinexpr->alias = NULL;
301 joinexpr->rtindex = joinrti;
302
303 /* Make the new join be the sole entry in the query's jointree */
304 parse->jointree->fromlist = list_make1(joinexpr);
305 parse->jointree->quals = NULL;
306
307 /*
308 * If necessary, mark parse->targetlist entries that refer to the target
309 * as nullable by the join. Normally the targetlist will be empty for a
310 * MERGE, but if the target is a trigger-updatable view, it will contain a
311 * whole-row Var referring to the expanded view query.
312 */
313 if (parse->targetList != NIL &&
314 (jointype == JOIN_RIGHT || jointype == JOIN_FULL))
315 parse->targetList = (List *)
316 add_nulling_relids((Node *) parse->targetList,
317 bms_make_singleton(parse->mergeTargetRelation),
318 bms_make_singleton(joinrti));
319
320 /*
321 * If the source relation is on the outer side of the join, mark any
322 * source relation Vars in the join condition, actions, and RETURNING list
323 * as nullable by the join. These Vars will be added to the targetlist by
324 * preprocess_targetlist(), so it's important to mark them correctly here.
325 *
326 * It might seem that this is not necessary for Vars in the join
327 * condition, since it is inside the join, but it is also needed above the
328 * join (in the ModifyTable node) to distinguish between the MATCHED and
329 * NOT MATCHED BY SOURCE cases -- see ExecMergeMatched(). Note that this
330 * creates a modified copy of the join condition, for use above the join,
331 * without modifying the original join condition, inside the join.
332 */
333 if (jointype == JOIN_LEFT || jointype == JOIN_FULL)
334 {
335 parse->mergeJoinCondition =
336 add_nulling_relids(parse->mergeJoinCondition,
337 bms_make_singleton(sourcerti),
338 bms_make_singleton(joinrti));
339
340 foreach_node(MergeAction, action, parse->mergeActionList)
341 {
342 action->qual =
344 bms_make_singleton(sourcerti),
345 bms_make_singleton(joinrti));
346
347 action->targetList = (List *)
348 add_nulling_relids((Node *) action->targetList,
349 bms_make_singleton(sourcerti),
350 bms_make_singleton(joinrti));
351 }
352
353 parse->returningList = (List *)
354 add_nulling_relids((Node *) parse->returningList,
355 bms_make_singleton(sourcerti),
356 bms_make_singleton(joinrti));
357 }
358
359 /*
360 * If there are any WHEN NOT MATCHED BY SOURCE actions, the executor will
361 * use the join condition to distinguish between MATCHED and NOT MATCHED
362 * BY SOURCE cases. Otherwise, it's no longer needed, and we set it to
363 * NULL, saving cycles during planning and execution.
364 *
365 * We need to be careful though: the executor evaluates this condition
366 * using the output of the join subplan node, which nulls the output from
367 * the source relation when the join condition doesn't match. That risks
368 * producing incorrect results when rechecking using a "non-strict" join
369 * condition, such as "src.col IS NOT DISTINCT FROM tgt.col". To guard
370 * against that, we add an additional "src IS NOT NULL" check to the join
371 * condition, so that it does the right thing when performing a recheck
372 * based on the output of the join subplan.
373 */
374 if (have_action[MERGE_WHEN_NOT_MATCHED_BY_SOURCE])
375 {
376 Var *var;
377 NullTest *ntest;
378
379 /* source wholerow Var (nullable by the new join) */
380 var = makeWholeRowVar(rt_fetch(sourcerti, parse->rtable),
381 sourcerti, 0, false);
382 var->varnullingrels = bms_make_singleton(joinrti);
383
384 /* "src IS NOT NULL" check */
385 ntest = makeNode(NullTest);
386 ntest->arg = (Expr *) var;
387 ntest->nulltesttype = IS_NOT_NULL;
388 ntest->argisrow = false;
389 ntest->location = -1;
390
391 /* combine it with the original join condition */
392 parse->mergeJoinCondition =
393 (Node *) make_and_qual((Node *) ntest, parse->mergeJoinCondition);
394 }
395 else
396 parse->mergeJoinCondition = NULL; /* join condition not needed */
397}
398
399/*
400 * preprocess_relation_rtes
401 * Do the preprocessing work for any relation RTEs in the FROM clause.
402 *
403 * This scans the rangetable for relation RTEs and retrieves the necessary
404 * catalog information for each relation. Using this information, it clears
405 * the inh flag for any relation that has no children, collects not-null
406 * attribute numbers for any relation that has column not-null constraints, and
407 * expands virtual generated columns for any relation that contains them.
408 *
409 * Note that expanding virtual generated columns may cause the query tree to
410 * have new copies of rangetable entries. Therefore, we have to use list_nth
411 * instead of foreach when iterating over the query's rangetable.
412 *
413 * Returns a modified copy of the query tree, if any relations with virtual
414 * generated columns are present.
415 */
416Query *
418{
419 Query *parse = root->parse;
420 int rtable_size;
421 int rt_index;
422
423 rtable_size = list_length(parse->rtable);
424
425 for (rt_index = 0; rt_index < rtable_size; rt_index++)
426 {
427 RangeTblEntry *rte = rt_fetch(rt_index + 1, parse->rtable);
428 Relation relation;
429
430 /* We only care about relation RTEs. */
431 if (rte->rtekind != RTE_RELATION)
432 continue;
433
434 /*
435 * We need not lock the relation since it was already locked by the
436 * rewriter.
437 */
438 relation = table_open(rte->relid, NoLock);
439
440 /*
441 * Check to see if the relation actually has any children; if not,
442 * clear the inh flag so we can treat it as a plain base relation.
443 *
444 * Note: this could give a false-positive result, if the rel once had
445 * children but no longer does. We used to be able to clear rte->inh
446 * later on when we discovered that, but no more; we have to handle
447 * such cases as full-fledged inheritance.
448 */
449 if (rte->inh)
450 rte->inh = relation->rd_rel->relhassubclass;
451
452 /*
453 * Check to see if the relation has any column not-null constraints;
454 * if so, retrieve the constraint information and store it in a
455 * relation OID based hash table.
456 */
458
459 /*
460 * Check to see if the relation has any virtual generated columns; if
461 * so, replace all Var nodes in the query that reference these columns
462 * with the generation expressions.
463 */
465 rte, rt_index + 1,
466 relation);
467
468 table_close(relation, NoLock);
469 }
470
471 return parse;
472}
473
474/*
475 * expand_virtual_generated_columns
476 * Expand virtual generated columns for the given relation.
477 *
478 * This checks whether the given relation has any virtual generated columns,
479 * and if so, replaces all Var nodes in the query that reference those columns
480 * with their generation expressions.
481 *
482 * Returns a modified copy of the query tree if the relation contains virtual
483 * generated columns.
484 */
485static Query *
487 RangeTblEntry *rte, int rt_index,
488 Relation relation)
489{
490 TupleDesc tupdesc;
491
492 /* Only normal relations can have virtual generated columns */
493 Assert(rte->rtekind == RTE_RELATION);
494
495 tupdesc = RelationGetDescr(relation);
496 if (tupdesc->constr && tupdesc->constr->has_generated_virtual)
497 {
498 List *tlist = NIL;
500
501 for (int i = 0; i < tupdesc->natts; i++)
502 {
503 Form_pg_attribute attr = TupleDescAttr(tupdesc, i);
504 TargetEntry *tle;
505
506 if (attr->attgenerated == ATTRIBUTE_GENERATED_VIRTUAL)
507 {
508 Node *defexpr;
509
510 defexpr = build_generation_expression(relation, i + 1);
511 ChangeVarNodes(defexpr, 1, rt_index, 0);
512
513 tle = makeTargetEntry((Expr *) defexpr, i + 1, 0, false);
514 tlist = lappend(tlist, tle);
515 }
516 else
517 {
518 Var *var;
519
520 var = makeVar(rt_index,
521 i + 1,
522 attr->atttypid,
523 attr->atttypmod,
524 attr->attcollation,
525 0);
526
527 tle = makeTargetEntry((Expr *) var, i + 1, 0, false);
528 tlist = lappend(tlist, tle);
529 }
530 }
531
532 Assert(list_length(tlist) > 0);
533 Assert(!rte->lateral);
534
535 /*
536 * The relation's targetlist items are now in the appropriate form to
537 * insert into the query, except that we may need to wrap them in
538 * PlaceHolderVars. Set up required context data for
539 * pullup_replace_vars.
540 */
541 rvcontext.root = root;
542 rvcontext.targetlist = tlist;
543 rvcontext.target_rte = rte;
544 rvcontext.result_relation = parse->resultRelation;
545 /* won't need these values */
546 rvcontext.relids = NULL;
547 rvcontext.nullinfo = NULL;
548 /* pass NULL for outer_hasSubLinks */
549 rvcontext.outer_hasSubLinks = NULL;
550 rvcontext.varno = rt_index;
551 /* this flag will be set below, if needed */
552 rvcontext.wrap_option = REPLACE_WRAP_NONE;
553 /* initialize cache array with indexes 0 .. length(tlist) */
554 rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
555 sizeof(Node *));
556
557 /*
558 * If the query uses grouping sets, we need a PlaceHolderVar for each
559 * expression of the relation's targetlist items. (See comments in
560 * pull_up_simple_subquery().)
561 */
562 if (parse->groupingSets)
563 rvcontext.wrap_option = REPLACE_WRAP_ALL;
564
565 /*
566 * Apply pullup variable replacement throughout the query tree.
567 */
568 parse = (Query *) pullup_replace_vars((Node *) parse, &rvcontext);
569 }
570
571 return parse;
572}
573
574/*
575 * replace_empty_jointree
576 * If the Query's jointree is empty, replace it with a dummy RTE_RESULT
577 * relation.
578 *
579 * By doing this, we can avoid a bunch of corner cases that formerly existed
580 * for SELECTs with omitted FROM clauses. An example is that a subquery
581 * with empty jointree previously could not be pulled up, because that would
582 * have resulted in an empty relid set, making the subquery not uniquely
583 * identifiable for join or PlaceHolderVar processing.
584 *
585 * Unlike most other functions in this file, this function doesn't recurse;
586 * we rely on other processing to invoke it on sub-queries at suitable times.
587 */
588void
590{
591 RangeTblEntry *rte;
592 Index rti;
593 RangeTblRef *rtr;
594
595 /* Nothing to do if jointree is already nonempty */
596 if (parse->jointree->fromlist != NIL)
597 return;
598
599 /* We mustn't change it in the top level of a setop tree, either */
600 if (parse->setOperations)
601 return;
602
603 /* Create suitable RTE */
604 rte = makeNode(RangeTblEntry);
605 rte->rtekind = RTE_RESULT;
606 rte->eref = makeAlias("*RESULT*", NIL);
607
608 /* Add it to rangetable */
609 parse->rtable = lappend(parse->rtable, rte);
610 rti = list_length(parse->rtable);
611
612 /* And jam a reference into the jointree */
613 rtr = makeNode(RangeTblRef);
614 rtr->rtindex = rti;
615 parse->jointree->fromlist = list_make1(rtr);
616}
617
618/*
619 * pull_up_sublinks
620 * Attempt to pull up ANY and EXISTS SubLinks to be treated as
621 * semijoins or anti-semijoins.
622 *
623 * A clause "foo op ANY (sub-SELECT)" can be processed by pulling the
624 * sub-SELECT up to become a rangetable entry and treating the implied
625 * comparisons as quals of a semijoin. However, this optimization *only*
626 * works at the top level of WHERE or a JOIN/ON clause, because we cannot
627 * distinguish whether the ANY ought to return FALSE or NULL in cases
628 * involving NULL inputs. Also, in an outer join's ON clause we can only
629 * do this if the sublink is degenerate (ie, references only the nullable
630 * side of the join). In that case it is legal to push the semijoin
631 * down into the nullable side of the join. If the sublink references any
632 * nonnullable-side variables then it would have to be evaluated as part
633 * of the outer join, which makes things way too complicated.
634 *
635 * Under similar conditions, EXISTS and NOT EXISTS clauses can be handled
636 * by pulling up the sub-SELECT and creating a semijoin or anti-semijoin.
637 *
638 * This routine searches for such clauses and does the necessary parsetree
639 * transformations if any are found.
640 *
641 * This routine has to run before preprocess_expression(), so the quals
642 * clauses are not yet reduced to implicit-AND format, and are not guaranteed
643 * to be AND/OR-flat either. That means we need to recursively search through
644 * explicit AND clauses. We stop as soon as we hit a non-AND item.
645 */
646void
648{
649 Node *jtnode;
650 Relids relids;
651
652 /* Begin recursion through the jointree */
654 (Node *) root->parse->jointree,
655 &relids);
656
657 /*
658 * root->parse->jointree must always be a FromExpr, so insert a dummy one
659 * if we got a bare RangeTblRef or JoinExpr out of the recursion.
660 */
661 if (IsA(jtnode, FromExpr))
662 root->parse->jointree = (FromExpr *) jtnode;
663 else
664 root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL);
665}
666
667/*
668 * Recurse through jointree nodes for pull_up_sublinks()
669 *
670 * In addition to returning the possibly-modified jointree node, we return
671 * a relids set of the contained rels into *relids.
672 */
673static Node *
675 Relids *relids)
676{
677 /* Since this function recurses, it could be driven to stack overflow. */
679
680 if (jtnode == NULL)
681 {
682 *relids = NULL;
683 }
684 else if (IsA(jtnode, RangeTblRef))
685 {
686 int varno = ((RangeTblRef *) jtnode)->rtindex;
687
688 *relids = bms_make_singleton(varno);
689 /* jtnode is returned unmodified */
690 }
691 else if (IsA(jtnode, FromExpr))
692 {
693 FromExpr *f = (FromExpr *) jtnode;
694 List *newfromlist = NIL;
695 Relids frelids = NULL;
696 FromExpr *newf;
697 Node *jtlink;
698 ListCell *l;
699
700 /* First, recurse to process children and collect their relids */
701 foreach(l, f->fromlist)
702 {
703 Node *newchild;
704 Relids childrelids;
705
707 lfirst(l),
708 &childrelids);
709 newfromlist = lappend(newfromlist, newchild);
710 frelids = bms_join(frelids, childrelids);
711 }
712 /* Build the replacement FromExpr; no quals yet */
713 newf = makeFromExpr(newfromlist, NULL);
714 /* Set up a link representing the rebuilt jointree */
715 jtlink = (Node *) newf;
716 /* Now process qual --- all children are available for use */
718 &jtlink, frelids,
719 NULL, NULL);
720
721 /*
722 * Note that the result will be either newf, or a stack of JoinExprs
723 * with newf at the base. We rely on subsequent optimization steps to
724 * flatten this and rearrange the joins as needed.
725 *
726 * Although we could include the pulled-up subqueries in the returned
727 * relids, there's no need since upper quals couldn't refer to their
728 * outputs anyway.
729 */
730 *relids = frelids;
731 jtnode = jtlink;
732 }
733 else if (IsA(jtnode, JoinExpr))
734 {
735 JoinExpr *j;
736 Relids leftrelids;
737 Relids rightrelids;
738 Node *jtlink;
739
740 /*
741 * Make a modifiable copy of join node, but don't bother copying its
742 * subnodes (yet).
743 */
744 j = (JoinExpr *) palloc(sizeof(JoinExpr));
745 memcpy(j, jtnode, sizeof(JoinExpr));
746 jtlink = (Node *) j;
747
748 /* Recurse to process children and collect their relids */
750 &leftrelids);
752 &rightrelids);
753
754 /*
755 * Now process qual, showing appropriate child relids as available,
756 * and attach any pulled-up jointree items at the right place. In the
757 * inner-join case we put new JoinExprs above the existing one (much
758 * as for a FromExpr-style join). In outer-join cases the new
759 * JoinExprs must go into the nullable side of the outer join. The
760 * point of the available_rels machinations is to ensure that we only
761 * pull up quals for which that's okay.
762 *
763 * We don't expect to see any pre-existing JOIN_SEMI, JOIN_ANTI,
764 * JOIN_RIGHT_SEMI, or JOIN_RIGHT_ANTI jointypes here.
765 */
766 switch (j->jointype)
767 {
768 case JOIN_INNER:
769 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
770 &jtlink,
771 bms_union(leftrelids,
772 rightrelids),
773 NULL, NULL);
774 break;
775 case JOIN_LEFT:
776 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
777 &j->rarg,
778 rightrelids,
779 NULL, NULL);
780 break;
781 case JOIN_FULL:
782 /* can't do anything with full-join quals */
783 break;
784 case JOIN_RIGHT:
785 j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
786 &j->larg,
787 leftrelids,
788 NULL, NULL);
789 break;
790 default:
791 elog(ERROR, "unrecognized join type: %d",
792 (int) j->jointype);
793 break;
794 }
795
796 /*
797 * Although we could include the pulled-up subqueries in the returned
798 * relids, there's no need since upper quals couldn't refer to their
799 * outputs anyway. But we *do* need to include the join's own rtindex
800 * because we haven't yet collapsed join alias variables, so upper
801 * levels would mistakenly think they couldn't use references to this
802 * join.
803 */
804 *relids = bms_join(leftrelids, rightrelids);
805 if (j->rtindex)
806 *relids = bms_add_member(*relids, j->rtindex);
807 jtnode = jtlink;
808 }
809 else
810 elog(ERROR, "unrecognized node type: %d",
811 (int) nodeTag(jtnode));
812 return jtnode;
813}
814
815/*
816 * Recurse through top-level qual nodes for pull_up_sublinks()
817 *
818 * jtlink1 points to the link in the jointree where any new JoinExprs should
819 * be inserted if they reference available_rels1 (i.e., available_rels1
820 * denotes the relations present underneath jtlink1). Optionally, jtlink2 can
821 * point to a second link where new JoinExprs should be inserted if they
822 * reference available_rels2 (pass NULL for both those arguments if not used).
823 * Note that SubLinks referencing both sets of variables cannot be optimized.
824 * If we find multiple pull-up-able SubLinks, they'll get stacked onto jtlink1
825 * and/or jtlink2 in the order we encounter them. We rely on subsequent
826 * optimization to rearrange the stack if appropriate.
827 *
828 * Returns the replacement qual node, or NULL if the qual should be removed.
829 */
830static Node *
832 Node **jtlink1, Relids available_rels1,
833 Node **jtlink2, Relids available_rels2)
834{
835 if (node == NULL)
836 return NULL;
837 if (IsA(node, SubLink))
838 {
839 SubLink *sublink = (SubLink *) node;
840 JoinExpr *j;
841 Relids child_rels;
842
843 /* Is it a convertible ANY or EXISTS clause? */
844 if (sublink->subLinkType == ANY_SUBLINK)
845 {
846 ScalarArrayOpExpr *saop;
847
848 if ((saop = convert_VALUES_to_ANY(root,
849 sublink->testexpr,
850 (Query *) sublink->subselect)) != NULL)
851
852 /*
853 * The VALUES sequence was simplified. Nothing more to do
854 * here.
855 */
856 return (Node *) saop;
857
858 if ((j = convert_ANY_sublink_to_join(root, sublink,
859 available_rels1)) != NULL)
860 {
861 /* Yes; insert the new join node into the join tree */
862 j->larg = *jtlink1;
863 *jtlink1 = (Node *) j;
864 /* Recursively process pulled-up jointree nodes */
866 j->rarg,
867 &child_rels);
868
869 /*
870 * Now recursively process the pulled-up quals. Any inserted
871 * joins can get stacked onto either j->larg or j->rarg,
872 * depending on which rels they reference.
873 */
875 j->quals,
876 &j->larg,
877 available_rels1,
878 &j->rarg,
879 child_rels);
880 /* Return NULL representing constant TRUE */
881 return NULL;
882 }
883 if (available_rels2 != NULL &&
885 available_rels2)) != NULL)
886 {
887 /* Yes; insert the new join node into the join tree */
888 j->larg = *jtlink2;
889 *jtlink2 = (Node *) j;
890 /* Recursively process pulled-up jointree nodes */
892 j->rarg,
893 &child_rels);
894
895 /*
896 * Now recursively process the pulled-up quals. Any inserted
897 * joins can get stacked onto either j->larg or j->rarg,
898 * depending on which rels they reference.
899 */
901 j->quals,
902 &j->larg,
903 available_rels2,
904 &j->rarg,
905 child_rels);
906 /* Return NULL representing constant TRUE */
907 return NULL;
908 }
909 }
910 else if (sublink->subLinkType == EXISTS_SUBLINK)
911 {
912 if ((j = convert_EXISTS_sublink_to_join(root, sublink, false,
913 available_rels1)) != NULL)
914 {
915 /* Yes; insert the new join node into the join tree */
916 j->larg = *jtlink1;
917 *jtlink1 = (Node *) j;
918 /* Recursively process pulled-up jointree nodes */
920 j->rarg,
921 &child_rels);
922
923 /*
924 * Now recursively process the pulled-up quals. Any inserted
925 * joins can get stacked onto either j->larg or j->rarg,
926 * depending on which rels they reference.
927 */
929 j->quals,
930 &j->larg,
931 available_rels1,
932 &j->rarg,
933 child_rels);
934 /* Return NULL representing constant TRUE */
935 return NULL;
936 }
937 if (available_rels2 != NULL &&
938 (j = convert_EXISTS_sublink_to_join(root, sublink, false,
939 available_rels2)) != NULL)
940 {
941 /* Yes; insert the new join node into the join tree */
942 j->larg = *jtlink2;
943 *jtlink2 = (Node *) j;
944 /* Recursively process pulled-up jointree nodes */
946 j->rarg,
947 &child_rels);
948
949 /*
950 * Now recursively process the pulled-up quals. Any inserted
951 * joins can get stacked onto either j->larg or j->rarg,
952 * depending on which rels they reference.
953 */
955 j->quals,
956 &j->larg,
957 available_rels2,
958 &j->rarg,
959 child_rels);
960 /* Return NULL representing constant TRUE */
961 return NULL;
962 }
963 }
964 /* Else return it unmodified */
965 return node;
966 }
967 if (is_notclause(node))
968 {
969 /* If the immediate argument of NOT is EXISTS, try to convert */
970 SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node);
971 JoinExpr *j;
972 Relids child_rels;
973
974 if (sublink && IsA(sublink, SubLink))
975 {
976 if (sublink->subLinkType == EXISTS_SUBLINK)
977 {
978 if ((j = convert_EXISTS_sublink_to_join(root, sublink, true,
979 available_rels1)) != NULL)
980 {
981 /* Yes; insert the new join node into the join tree */
982 j->larg = *jtlink1;
983 *jtlink1 = (Node *) j;
984 /* Recursively process pulled-up jointree nodes */
986 j->rarg,
987 &child_rels);
988
989 /*
990 * Now recursively process the pulled-up quals. Because
991 * we are underneath a NOT, we can't pull up sublinks that
992 * reference the left-hand stuff, but it's still okay to
993 * pull up sublinks referencing j->rarg.
994 */
996 j->quals,
997 &j->rarg,
998 child_rels,
999 NULL, NULL);
1000 /* Return NULL representing constant TRUE */
1001 return NULL;
1002 }
1003 if (available_rels2 != NULL &&
1004 (j = convert_EXISTS_sublink_to_join(root, sublink, true,
1005 available_rels2)) != NULL)
1006 {
1007 /* Yes; insert the new join node into the join tree */
1008 j->larg = *jtlink2;
1009 *jtlink2 = (Node *) j;
1010 /* Recursively process pulled-up jointree nodes */
1012 j->rarg,
1013 &child_rels);
1014
1015 /*
1016 * Now recursively process the pulled-up quals. Because
1017 * we are underneath a NOT, we can't pull up sublinks that
1018 * reference the left-hand stuff, but it's still okay to
1019 * pull up sublinks referencing j->rarg.
1020 */
1022 j->quals,
1023 &j->rarg,
1024 child_rels,
1025 NULL, NULL);
1026 /* Return NULL representing constant TRUE */
1027 return NULL;
1028 }
1029 }
1030 }
1031 /* Else return it unmodified */
1032 return node;
1033 }
1034 if (is_andclause(node))
1035 {
1036 /* Recurse into AND clause */
1037 List *newclauses = NIL;
1038 ListCell *l;
1039
1040 foreach(l, ((BoolExpr *) node)->args)
1041 {
1042 Node *oldclause = (Node *) lfirst(l);
1043 Node *newclause;
1044
1046 oldclause,
1047 jtlink1,
1048 available_rels1,
1049 jtlink2,
1050 available_rels2);
1051 if (newclause)
1052 newclauses = lappend(newclauses, newclause);
1053 }
1054 /* We might have got back fewer clauses than we started with */
1055 if (newclauses == NIL)
1056 return NULL;
1057 else if (list_length(newclauses) == 1)
1058 return (Node *) linitial(newclauses);
1059 else
1060 return (Node *) make_andclause(newclauses);
1061 }
1062 /* Stop if not an AND */
1063 return node;
1064}
1065
1066/*
1067 * preprocess_function_rtes
1068 * Constant-simplify any FUNCTION RTEs in the FROM clause, and then
1069 * attempt to "inline" any that can be converted to simple subqueries.
1070 *
1071 * If an RTE_FUNCTION rtable entry invokes a set-returning SQL function that
1072 * contains just a simple SELECT, we can convert the rtable entry to an
1073 * RTE_SUBQUERY entry exposing the SELECT directly. Other sorts of functions
1074 * are also inline-able if they have a support function that can generate
1075 * the replacement sub-Query. This is especially useful if the subquery can
1076 * then be "pulled up" for further optimization, but we do it even if not,
1077 * to reduce executor overhead.
1078 *
1079 * This has to be done before we have started to do any optimization of
1080 * subqueries, else any such steps wouldn't get applied to subqueries
1081 * obtained via inlining. However, we do it after pull_up_sublinks
1082 * so that we can inline any functions used in SubLink subselects.
1083 *
1084 * The reason for applying const-simplification at this stage is that
1085 * (a) we'd need to do it anyway to inline a SRF, and (b) by doing it now,
1086 * we can be sure that pull_up_constant_function() will see constants
1087 * if there are constants to be seen. This approach also guarantees
1088 * that every FUNCTION RTE has been const-simplified, allowing planner.c's
1089 * preprocess_expression() to skip doing it again.
1090 *
1091 * Like most of the planner, this feels free to scribble on its input data
1092 * structure.
1093 */
1094void
1096{
1097 ListCell *rt;
1098
1099 foreach(rt, root->parse->rtable)
1100 {
1101 RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
1102
1103 if (rte->rtekind == RTE_FUNCTION)
1104 {
1105 Query *funcquery;
1106
1107 /* Apply const-simplification */
1108 rte->functions = (List *)
1110
1111 /* Check safety of expansion, and expand if possible */
1112 funcquery = inline_function_in_from(root, rte);
1113 if (funcquery)
1114 {
1115 /* Successful expansion, convert the RTE to a subquery */
1116 rte->rtekind = RTE_SUBQUERY;
1117 rte->subquery = funcquery;
1118 rte->security_barrier = false;
1119
1120 /*
1121 * Clear fields that should not be set in a subquery RTE.
1122 * However, we leave rte->functions filled in for the moment,
1123 * in case makeWholeRowVar needs to consult it. We'll clear
1124 * it in setrefs.c (see add_rte_to_flat_rtable) so that this
1125 * abuse of the data structure doesn't escape the planner.
1126 */
1127 rte->funcordinality = false;
1128 }
1129 }
1130 }
1131}
1132
1133/*
1134 * pull_up_subqueries
1135 * Look for subqueries in the rangetable that can be pulled up into
1136 * the parent query. If the subquery has no special features like
1137 * grouping/aggregation then we can merge it into the parent's jointree.
1138 * Also, subqueries that are simple UNION ALL structures can be
1139 * converted into "append relations".
1140 */
1141void
1143{
1144 /* Top level of jointree must always be a FromExpr */
1145 Assert(IsA(root->parse->jointree, FromExpr));
1146 /* Recursion starts with no containing join nor appendrel */
1147 root->parse->jointree = (FromExpr *)
1148 pull_up_subqueries_recurse(root, (Node *) root->parse->jointree,
1149 NULL, NULL);
1150 /* We should still have a FromExpr */
1151 Assert(IsA(root->parse->jointree, FromExpr));
1152}
1153
1154/*
1155 * pull_up_subqueries_recurse
1156 * Recursive guts of pull_up_subqueries.
1157 *
1158 * This recursively processes the jointree and returns a modified jointree.
1159 *
1160 * If this jointree node is within either side of an outer join, then
1161 * lowest_outer_join references the lowest such JoinExpr node; otherwise
1162 * it is NULL. We use this to constrain the effects of LATERAL subqueries.
1163 *
1164 * If we are looking at a member subquery of an append relation,
1165 * containing_appendrel describes that relation; else it is NULL.
1166 * This forces use of the PlaceHolderVar mechanism for all non-Var targetlist
1167 * items, and puts some additional restrictions on what can be pulled up.
1168 *
1169 * A tricky aspect of this code is that if we pull up a subquery we have
1170 * to replace Vars that reference the subquery's outputs throughout the
1171 * parent query, including quals attached to jointree nodes above the one
1172 * we are currently processing! We handle this by being careful to maintain
1173 * validity of the jointree structure while recursing, in the following sense:
1174 * whenever we recurse, all qual expressions in the tree must be reachable
1175 * from the top level, in case the recursive call needs to modify them.
1176 *
1177 * Notice also that we can't turn pullup_replace_vars loose on the whole
1178 * jointree, because it'd return a mutated copy of the tree; we have to
1179 * invoke it just on the quals, instead. This behavior is what makes it
1180 * reasonable to pass lowest_outer_join as a pointer rather than some
1181 * more-indirect way of identifying the lowest OJ. Likewise, we don't
1182 * replace append_rel_list members but only their substructure, so the
1183 * containing_appendrel reference is safe to use.
1184 */
1185static Node *
1187 JoinExpr *lowest_outer_join,
1188 AppendRelInfo *containing_appendrel)
1189{
1190 /* Since this function recurses, it could be driven to stack overflow. */
1192 /* Also, since it's a bit expensive, let's check for query cancel. */
1194
1195 Assert(jtnode != NULL);
1196 if (IsA(jtnode, RangeTblRef))
1197 {
1198 int varno = ((RangeTblRef *) jtnode)->rtindex;
1199 RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable);
1200
1201 /*
1202 * Is this a subquery RTE, and if so, is the subquery simple enough to
1203 * pull up?
1204 *
1205 * If we are looking at an append-relation member, we can't pull it up
1206 * unless is_safe_append_member says so.
1207 */
1208 if (rte->rtekind == RTE_SUBQUERY &&
1209 is_simple_subquery(root, rte->subquery, rte, lowest_outer_join) &&
1210 (containing_appendrel == NULL ||
1212 return pull_up_simple_subquery(root, jtnode, rte,
1213 lowest_outer_join,
1214 containing_appendrel);
1215
1216 /*
1217 * Alternatively, is it a simple UNION ALL subquery? If so, flatten
1218 * into an "append relation".
1219 *
1220 * It's safe to do this regardless of whether this query is itself an
1221 * appendrel member. (If you're thinking we should try to flatten the
1222 * two levels of appendrel together, you're right; but we handle that
1223 * in set_append_rel_pathlist, not here.)
1224 */
1225 if (rte->rtekind == RTE_SUBQUERY &&
1227 return pull_up_simple_union_all(root, jtnode, rte);
1228
1229 /*
1230 * Or perhaps it's a simple VALUES RTE?
1231 *
1232 * We don't allow VALUES pullup below an outer join nor into an
1233 * appendrel (such cases are impossible anyway at the moment).
1234 */
1235 if (rte->rtekind == RTE_VALUES &&
1236 lowest_outer_join == NULL &&
1237 containing_appendrel == NULL &&
1238 is_simple_values(root, rte))
1239 return pull_up_simple_values(root, jtnode, rte);
1240
1241 /*
1242 * Or perhaps it's a FUNCTION RTE that we could inline?
1243 */
1244 if (rte->rtekind == RTE_FUNCTION)
1245 return pull_up_constant_function(root, jtnode, rte,
1246 containing_appendrel);
1247
1248 /* Otherwise, do nothing at this node. */
1249 }
1250 else if (IsA(jtnode, FromExpr))
1251 {
1252 FromExpr *f = (FromExpr *) jtnode;
1253 ListCell *l;
1254
1255 Assert(containing_appendrel == NULL);
1256 /* Recursively transform all the child nodes */
1257 foreach(l, f->fromlist)
1258 {
1260 lowest_outer_join,
1261 NULL);
1262 }
1263 }
1264 else if (IsA(jtnode, JoinExpr))
1265 {
1266 JoinExpr *j = (JoinExpr *) jtnode;
1267
1268 Assert(containing_appendrel == NULL);
1269 /* Recurse, being careful to tell myself when inside outer join */
1270 switch (j->jointype)
1271 {
1272 case JOIN_INNER:
1273 j->larg = pull_up_subqueries_recurse(root, j->larg,
1274 lowest_outer_join,
1275 NULL);
1276 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1277 lowest_outer_join,
1278 NULL);
1279 break;
1280 case JOIN_LEFT:
1281 case JOIN_SEMI:
1282 case JOIN_ANTI:
1283 j->larg = pull_up_subqueries_recurse(root, j->larg,
1284 j,
1285 NULL);
1286 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1287 j,
1288 NULL);
1289 break;
1290 case JOIN_FULL:
1291 j->larg = pull_up_subqueries_recurse(root, j->larg,
1292 j,
1293 NULL);
1294 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1295 j,
1296 NULL);
1297 break;
1298 case JOIN_RIGHT:
1299 j->larg = pull_up_subqueries_recurse(root, j->larg,
1300 j,
1301 NULL);
1302 j->rarg = pull_up_subqueries_recurse(root, j->rarg,
1303 j,
1304 NULL);
1305 break;
1306 default:
1307 elog(ERROR, "unrecognized join type: %d",
1308 (int) j->jointype);
1309 break;
1310 }
1311 }
1312 else
1313 elog(ERROR, "unrecognized node type: %d",
1314 (int) nodeTag(jtnode));
1315 return jtnode;
1316}
1317
1318/*
1319 * pull_up_simple_subquery
1320 * Attempt to pull up a single simple subquery.
1321 *
1322 * jtnode is a RangeTblRef that has been tentatively identified as a simple
1323 * subquery by pull_up_subqueries. We return the replacement jointree node,
1324 * or jtnode itself if we determine that the subquery can't be pulled up
1325 * after all.
1326 *
1327 * rte is the RangeTblEntry referenced by jtnode. Remaining parameters are
1328 * as for pull_up_subqueries_recurse.
1329 */
1330static Node *
1332 JoinExpr *lowest_outer_join,
1333 AppendRelInfo *containing_appendrel)
1334{
1335 Query *parse = root->parse;
1336 int varno = ((RangeTblRef *) jtnode)->rtindex;
1337 Query *subquery;
1338 PlannerInfo *subroot;
1339 int rtoffset;
1341 ListCell *lc;
1342
1343 /*
1344 * Make a modifiable copy of the subquery to hack on, so that the RTE will
1345 * be left unchanged in case we decide below that we can't pull it up
1346 * after all.
1347 */
1348 subquery = copyObject(rte->subquery);
1349
1350 /*
1351 * Create a PlannerInfo data structure for this subquery.
1352 *
1353 * NOTE: the next few steps should match the first processing in
1354 * subquery_planner(). Can we refactor to avoid code duplication, or
1355 * would that just make things uglier?
1356 */
1357 subroot = makeNode(PlannerInfo);
1358 subroot->parse = subquery;
1359 subroot->glob = root->glob;
1360 subroot->query_level = root->query_level;
1361 subroot->plan_name = root->plan_name;
1362 subroot->parent_root = root->parent_root;
1363 subroot->plan_params = NIL;
1364 subroot->outer_params = NULL;
1365 subroot->planner_cxt = CurrentMemoryContext;
1366 subroot->init_plans = NIL;
1367 subroot->cte_plan_ids = NIL;
1368 subroot->multiexpr_params = NIL;
1369 subroot->join_domains = NIL;
1370 subroot->eq_classes = NIL;
1371 subroot->ec_merging_done = false;
1372 subroot->last_rinfo_serial = 0;
1373 subroot->all_result_relids = NULL;
1374 subroot->leaf_result_relids = NULL;
1375 subroot->append_rel_list = NIL;
1376 subroot->row_identity_vars = NIL;
1377 subroot->rowMarks = NIL;
1378 memset(subroot->upper_rels, 0, sizeof(subroot->upper_rels));
1379 memset(subroot->upper_targets, 0, sizeof(subroot->upper_targets));
1380 subroot->processed_groupClause = NIL;
1381 subroot->processed_distinctClause = NIL;
1382 subroot->processed_tlist = NIL;
1383 subroot->update_colnos = NIL;
1384 subroot->grouping_map = NULL;
1385 subroot->minmax_aggs = NIL;
1386 subroot->qual_security_level = 0;
1387 subroot->placeholdersFrozen = false;
1388 subroot->hasRecursion = false;
1389 subroot->assumeReplanning = false;
1390 subroot->wt_param_id = -1;
1391 subroot->non_recursive_path = NULL;
1392 /* We don't currently need a top JoinDomain for the subroot */
1393
1394 /* No CTEs to worry about */
1395 Assert(subquery->cteList == NIL);
1396
1397 /*
1398 * Scan the rangetable for relation RTEs and retrieve the necessary
1399 * catalog information for each relation. Using this information, clear
1400 * the inh flag for any relation that has no children, collect not-null
1401 * attribute numbers for any relation that has column not-null
1402 * constraints, and expand virtual generated columns for any relation that
1403 * contains them.
1404 */
1405 subquery = subroot->parse = preprocess_relation_rtes(subroot);
1406
1407 /*
1408 * If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so
1409 * that we don't need so many special cases to deal with that situation.
1410 */
1411 replace_empty_jointree(subquery);
1412
1413 /*
1414 * Pull up any SubLinks within the subquery's quals, so that we don't
1415 * leave unoptimized SubLinks behind.
1416 */
1417 if (subquery->hasSubLinks)
1418 pull_up_sublinks(subroot);
1419
1420 /*
1421 * Similarly, preprocess its function RTEs to inline any set-returning
1422 * functions in its rangetable.
1423 */
1424 preprocess_function_rtes(subroot);
1425
1426 /*
1427 * Recursively pull up the subquery's subqueries, so that
1428 * pull_up_subqueries' processing is complete for its jointree and
1429 * rangetable.
1430 *
1431 * Note: it's okay that the subquery's recursion starts with NULL for
1432 * containing-join info, even if we are within an outer join in the upper
1433 * query; the lower query starts with a clean slate for outer-join
1434 * semantics. Likewise, we needn't pass down appendrel state.
1435 */
1436 pull_up_subqueries(subroot);
1437
1438 /*
1439 * Now we must recheck whether the subquery is still simple enough to pull
1440 * up. If not, abandon processing it.
1441 *
1442 * We don't really need to recheck all the conditions involved, but it's
1443 * easier just to keep this "if" looking the same as the one in
1444 * pull_up_subqueries_recurse.
1445 */
1446 if (is_simple_subquery(root, subquery, rte, lowest_outer_join) &&
1447 (containing_appendrel == NULL || is_safe_append_member(subquery)))
1448 {
1449 /* good to go */
1450 }
1451 else
1452 {
1453 /*
1454 * Give up, return unmodified RangeTblRef.
1455 *
1456 * Note: The work we just did will be redone when the subquery gets
1457 * planned on its own. Perhaps we could avoid that by storing the
1458 * modified subquery back into the rangetable, but I'm not gonna risk
1459 * it now.
1460 */
1461 return jtnode;
1462 }
1463
1464 /*
1465 * We must flatten any join alias Vars in the subquery's targetlist,
1466 * because pulling up the subquery's subqueries might have changed their
1467 * expansions into arbitrary expressions, which could affect
1468 * pullup_replace_vars' decisions about whether PlaceHolderVar wrappers
1469 * are needed for tlist entries. (Likely it'd be better to do
1470 * flatten_join_alias_vars on the whole query tree at some earlier stage,
1471 * maybe even in the rewriter; but for now let's just fix this case here.)
1472 */
1473 subquery->targetList = (List *)
1474 flatten_join_alias_vars(subroot, subroot->parse,
1475 (Node *) subquery->targetList);
1476
1477 /*
1478 * Adjust level-0 varnos in subquery so that we can append its rangetable
1479 * to upper query's. We have to fix the subquery's append_rel_list as
1480 * well.
1481 */
1482 rtoffset = list_length(parse->rtable);
1483 OffsetVarNodes((Node *) subquery, rtoffset, 0);
1484 OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0);
1485
1486 /*
1487 * Upper-level vars in subquery are now one level closer to their parent
1488 * than before.
1489 */
1490 IncrementVarSublevelsUp((Node *) subquery, -1, 1);
1491 IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1);
1492
1493 /*
1494 * The subquery's targetlist items are now in the appropriate form to
1495 * insert into the top query, except that we may need to wrap them in
1496 * PlaceHolderVars. Set up required context data for pullup_replace_vars.
1497 * (Note that we should include the subquery's inner joins in relids,
1498 * since it may include join alias vars referencing them.)
1499 */
1500 rvcontext.root = root;
1501 rvcontext.targetlist = subquery->targetList;
1502 rvcontext.target_rte = rte;
1503 rvcontext.result_relation = 0;
1504 if (rte->lateral)
1505 {
1506 rvcontext.relids = get_relids_in_jointree((Node *) subquery->jointree,
1507 true, true);
1508 rvcontext.nullinfo = get_nullingrels(parse);
1509 }
1510 else /* won't need these values */
1511 {
1512 rvcontext.relids = NULL;
1513 rvcontext.nullinfo = NULL;
1514 }
1515 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
1516 rvcontext.varno = varno;
1517 /* this flag will be set below, if needed */
1518 rvcontext.wrap_option = REPLACE_WRAP_NONE;
1519 /* initialize cache array with indexes 0 .. length(tlist) */
1520 rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) *
1521 sizeof(Node *));
1522
1523 /*
1524 * If the parent query uses grouping sets, we need a PlaceHolderVar for
1525 * each expression of the subquery's targetlist items. This ensures that
1526 * expressions retain their separate identity so that they will match
1527 * grouping set columns when appropriate. (It'd be sufficient to wrap
1528 * values used in grouping set columns, and do so only in non-aggregated
1529 * portions of the tlist and havingQual, but that would require a lot of
1530 * infrastructure that pullup_replace_vars hasn't currently got.)
1531 */
1532 if (parse->groupingSets)
1533 rvcontext.wrap_option = REPLACE_WRAP_ALL;
1534
1535 /*
1536 * Replace all of the top query's references to the subquery's outputs
1537 * with copies of the adjusted subtlist items, being careful not to
1538 * replace any of the jointree structure.
1539 */
1541 containing_appendrel);
1542
1543 /*
1544 * If the subquery had a LATERAL marker, propagate that to any of its
1545 * child RTEs that could possibly now contain lateral cross-references.
1546 * The children might or might not contain any actual lateral
1547 * cross-references, but we have to mark the pulled-up child RTEs so that
1548 * later planner stages will check for such.
1549 */
1550 if (rte->lateral)
1551 {
1552 foreach(lc, subquery->rtable)
1553 {
1554 RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc);
1555
1556 switch (child_rte->rtekind)
1557 {
1558 case RTE_RELATION:
1559 if (child_rte->tablesample)
1560 child_rte->lateral = true;
1561 break;
1562 case RTE_SUBQUERY:
1563 case RTE_FUNCTION:
1564 case RTE_VALUES:
1565 case RTE_TABLEFUNC:
1566 child_rte->lateral = true;
1567 break;
1568 case RTE_JOIN:
1569 case RTE_CTE:
1571 case RTE_RESULT:
1572 case RTE_GROUP:
1573 /* these can't contain any lateral references */
1574 break;
1575 }
1576 }
1577 }
1578
1579 /*
1580 * Now append the adjusted rtable entries and their perminfos to upper
1581 * query. (We hold off until after fixing the upper rtable entries; no
1582 * point in running that code on the subquery ones too.)
1583 */
1584 CombineRangeTables(&parse->rtable, &parse->rteperminfos,
1585 subquery->rtable, subquery->rteperminfos);
1586
1587 /*
1588 * Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already
1589 * adjusted the marker rtindexes, so just concat the lists.)
1590 */
1591 parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks);
1592
1593 /*
1594 * We also have to fix the relid sets of any PlaceHolderVar nodes in the
1595 * parent query. (This could perhaps be done by pullup_replace_vars(),
1596 * but it seems cleaner to use two passes.) Note in particular that any
1597 * PlaceHolderVar nodes just created by pullup_replace_vars() will be
1598 * adjusted, so having created them with the subquery's varno is correct.
1599 *
1600 * Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We
1601 * already checked that this won't require introducing multiple subrelids
1602 * into the single-slot AppendRelInfo structs.
1603 */
1604 if (root->glob->lastPHId != 0 || root->append_rel_list)
1605 {
1606 Relids subrelids;
1607
1608 subrelids = get_relids_in_jointree((Node *) subquery->jointree,
1609 true, false);
1610 if (root->glob->lastPHId != 0)
1611 substitute_phv_relids((Node *) parse, varno, subrelids);
1612 fix_append_rel_relids(root, varno, subrelids);
1613 }
1614
1615 /*
1616 * And now add subquery's AppendRelInfos to our list.
1617 */
1618 root->append_rel_list = list_concat(root->append_rel_list,
1619 subroot->append_rel_list);
1620
1621 /*
1622 * We don't have to do the equivalent bookkeeping for outer-join info,
1623 * because that hasn't been set up yet. placeholder_list likewise.
1624 */
1625 Assert(root->join_info_list == NIL);
1626 Assert(subroot->join_info_list == NIL);
1627 Assert(root->placeholder_list == NIL);
1628 Assert(subroot->placeholder_list == NIL);
1629
1630 /*
1631 * We no longer need the RTE's copy of the subquery's query tree. Getting
1632 * rid of it saves nothing in particular so far as this level of query is
1633 * concerned; but if this query level is in turn pulled up into a parent,
1634 * we'd waste cycles copying the now-unused query tree.
1635 */
1636 rte->subquery = NULL;
1637
1638 /*
1639 * Miscellaneous housekeeping.
1640 *
1641 * Although replace_rte_variables() faithfully updated parse->hasSubLinks
1642 * if it copied any SubLinks out of the subquery's targetlist, we still
1643 * could have SubLinks added to the query in the expressions of FUNCTION
1644 * and VALUES RTEs copied up from the subquery. So it's necessary to copy
1645 * subquery->hasSubLinks anyway. Perhaps this can be improved someday.
1646 */
1647 parse->hasSubLinks |= subquery->hasSubLinks;
1648
1649 /* If subquery had any RLS conditions, now main query does too */
1650 parse->hasRowSecurity |= subquery->hasRowSecurity;
1651
1652 /*
1653 * subquery won't be pulled up if it hasAggs, hasWindowFuncs, or
1654 * hasTargetSRFs, so no work needed on those flags
1655 */
1656
1657 /*
1658 * Return the adjusted subquery jointree to replace the RangeTblRef entry
1659 * in parent's jointree; or, if the FromExpr is degenerate, just return
1660 * its single member.
1661 */
1662 Assert(IsA(subquery->jointree, FromExpr));
1663 Assert(subquery->jointree->fromlist != NIL);
1664 if (subquery->jointree->quals == NULL &&
1665 list_length(subquery->jointree->fromlist) == 1)
1666 return (Node *) linitial(subquery->jointree->fromlist);
1667
1668 return (Node *) subquery->jointree;
1669}
1670
1671/*
1672 * pull_up_simple_union_all
1673 * Pull up a single simple UNION ALL subquery.
1674 *
1675 * jtnode is a RangeTblRef that has been identified as a simple UNION ALL
1676 * subquery by pull_up_subqueries. We pull up the leaf subqueries and
1677 * build an "append relation" for the union set. The result value is just
1678 * jtnode, since we don't actually need to change the query jointree.
1679 */
1680static Node *
1682{
1683 int varno = ((RangeTblRef *) jtnode)->rtindex;
1684 Query *subquery = rte->subquery;
1685 int rtoffset = list_length(root->parse->rtable);
1686 List *rtable;
1687
1688 /*
1689 * Make a modifiable copy of the subquery's rtable, so we can adjust
1690 * upper-level Vars in it. There are no such Vars in the setOperations
1691 * tree proper, so fixing the rtable should be sufficient.
1692 */
1693 rtable = copyObject(subquery->rtable);
1694
1695 /*
1696 * Upper-level vars in subquery are now one level closer to their parent
1697 * than before. We don't have to worry about offsetting varnos, though,
1698 * because the UNION leaf queries can't cross-reference each other.
1699 */
1700 IncrementVarSublevelsUp_rtable(rtable, -1, 1);
1701
1702 /*
1703 * If the UNION ALL subquery had a LATERAL marker, propagate that to all
1704 * its children. The individual children might or might not contain any
1705 * actual lateral cross-references, but we have to mark the pulled-up
1706 * child RTEs so that later planner stages will check for such.
1707 */
1708 if (rte->lateral)
1709 {
1710 ListCell *rt;
1711
1712 foreach(rt, rtable)
1713 {
1714 RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt);
1715
1716 Assert(child_rte->rtekind == RTE_SUBQUERY);
1717 child_rte->lateral = true;
1718 }
1719 }
1720
1721 /*
1722 * Append child RTEs (and their perminfos) to parent rtable.
1723 */
1724 CombineRangeTables(&root->parse->rtable, &root->parse->rteperminfos,
1725 rtable, subquery->rteperminfos);
1726
1727 /*
1728 * Recursively scan the subquery's setOperations tree and add
1729 * AppendRelInfo nodes for leaf subqueries to the parent's
1730 * append_rel_list. Also apply pull_up_subqueries to the leaf subqueries.
1731 */
1732 Assert(subquery->setOperations);
1733 pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery,
1734 rtoffset);
1735
1736 /*
1737 * Mark the parent as an append relation.
1738 */
1739 rte->inh = true;
1740
1741 return jtnode;
1742}
1743
1744/*
1745 * pull_up_union_leaf_queries -- recursive guts of pull_up_simple_union_all
1746 *
1747 * Build an AppendRelInfo for each leaf query in the setop tree, and then
1748 * apply pull_up_subqueries to the leaf query.
1749 *
1750 * Note that setOpQuery is the Query containing the setOp node, whose tlist
1751 * contains references to all the setop output columns. When called from
1752 * pull_up_simple_union_all, this is *not* the same as root->parse, which is
1753 * the parent Query we are pulling up into.
1754 *
1755 * parentRTindex is the appendrel parent's index in root->parse->rtable.
1756 *
1757 * The child RTEs have already been copied to the parent. childRToffset
1758 * tells us where in the parent's range table they were copied. When called
1759 * from flatten_simple_union_all, childRToffset is 0 since the child RTEs
1760 * were already in root->parse->rtable and no RT index adjustment is needed.
1761 */
1762static void
1764 Query *setOpQuery, int childRToffset)
1765{
1766 if (IsA(setOp, RangeTblRef))
1767 {
1768 RangeTblRef *rtr = (RangeTblRef *) setOp;
1769 int childRTindex;
1770 AppendRelInfo *appinfo;
1771
1772 /*
1773 * Calculate the index in the parent's range table
1774 */
1775 childRTindex = childRToffset + rtr->rtindex;
1776
1777 /*
1778 * Build a suitable AppendRelInfo, and attach to parent's list.
1779 */
1780 appinfo = makeNode(AppendRelInfo);
1781 appinfo->parent_relid = parentRTindex;
1782 appinfo->child_relid = childRTindex;
1783 appinfo->parent_reltype = InvalidOid;
1784 appinfo->child_reltype = InvalidOid;
1785 make_setop_translation_list(setOpQuery, childRTindex, appinfo);
1786 appinfo->parent_reloid = InvalidOid;
1787 root->append_rel_list = lappend(root->append_rel_list, appinfo);
1788
1789 /*
1790 * Recursively apply pull_up_subqueries to the new child RTE. (We
1791 * must build the AppendRelInfo first, because this will modify it;
1792 * indeed, that's the only part of the upper query where Vars
1793 * referencing childRTindex can exist at this point.)
1794 *
1795 * Note that we can pass NULL for containing-join info even if we're
1796 * actually under an outer join, because the child's expressions
1797 * aren't going to propagate up to the join. Also, we ignore the
1798 * possibility that pull_up_subqueries_recurse() returns a different
1799 * jointree node than what we pass it; if it does, the important thing
1800 * is that it replaced the child relid in the AppendRelInfo node.
1801 */
1802 rtr = makeNode(RangeTblRef);
1803 rtr->rtindex = childRTindex;
1804 (void) pull_up_subqueries_recurse(root, (Node *) rtr,
1805 NULL, appinfo);
1806 }
1807 else if (IsA(setOp, SetOperationStmt))
1808 {
1809 SetOperationStmt *op = (SetOperationStmt *) setOp;
1810
1811 /* Recurse to reach leaf queries */
1812 pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery,
1813 childRToffset);
1814 pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery,
1815 childRToffset);
1816 }
1817 else
1818 {
1819 elog(ERROR, "unrecognized node type: %d",
1820 (int) nodeTag(setOp));
1821 }
1822}
1823
1824/*
1825 * make_setop_translation_list
1826 * Build the list of translations from parent Vars to child Vars for
1827 * a UNION ALL member. (At this point it's just a simple list of
1828 * referencing Vars, but if we succeed in pulling up the member
1829 * subquery, the Vars will get replaced by pulled-up expressions.)
1830 * Also create the rather trivial reverse-translation array.
1831 */
1832static void
1834 AppendRelInfo *appinfo)
1835{
1836 List *vars = NIL;
1837 AttrNumber *pcolnos;
1838 ListCell *l;
1839
1840 /* Initialize reverse-translation array with all entries zero */
1841 /* (entries for resjunk columns will stay that way) */
1842 appinfo->num_child_cols = list_length(query->targetList);
1843 appinfo->parent_colnos = pcolnos =
1844 (AttrNumber *) palloc0(appinfo->num_child_cols * sizeof(AttrNumber));
1845
1846 foreach(l, query->targetList)
1847 {
1848 TargetEntry *tle = (TargetEntry *) lfirst(l);
1849
1850 if (tle->resjunk)
1851 continue;
1852
1853 vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle));
1854 pcolnos[tle->resno - 1] = tle->resno;
1855 }
1856
1857 appinfo->translated_vars = vars;
1858}
1859
1860/*
1861 * is_simple_subquery
1862 * Check a subquery in the range table to see if it's simple enough
1863 * to pull up into the parent query.
1864 *
1865 * rte is the RTE_SUBQUERY RangeTblEntry that contained the subquery.
1866 * (Note subquery is not necessarily equal to rte->subquery; it could be a
1867 * processed copy of that.)
1868 * lowest_outer_join is the lowest outer join above the subquery, or NULL.
1869 */
1870static bool
1872 JoinExpr *lowest_outer_join)
1873{
1874 /*
1875 * Let's just make sure it's a valid subselect ...
1876 */
1877 if (!IsA(subquery, Query) ||
1878 subquery->commandType != CMD_SELECT)
1879 elog(ERROR, "subquery is bogus");
1880
1881 /*
1882 * Can't currently pull up a query with setops (unless it's simple UNION
1883 * ALL, which is handled by a different code path). Maybe after querytree
1884 * redesign...
1885 */
1886 if (subquery->setOperations)
1887 return false;
1888
1889 /*
1890 * Can't pull up a subquery involving grouping, aggregation, SRFs,
1891 * sorting, limiting, or WITH. (XXX WITH could possibly be allowed later)
1892 *
1893 * We also don't pull up a subquery that has explicit FOR UPDATE/SHARE
1894 * clauses, because pullup would cause the locking to occur semantically
1895 * higher than it should. Implicit FOR UPDATE/SHARE is okay because in
1896 * that case the locking was originally declared in the upper query
1897 * anyway.
1898 */
1899 if (subquery->hasAggs ||
1900 subquery->hasWindowFuncs ||
1901 subquery->hasTargetSRFs ||
1902 subquery->groupClause ||
1903 subquery->groupingSets ||
1904 subquery->havingQual ||
1905 subquery->sortClause ||
1906 subquery->distinctClause ||
1907 subquery->limitOffset ||
1908 subquery->limitCount ||
1909 subquery->hasForUpdate ||
1910 subquery->cteList)
1911 return false;
1912
1913 /*
1914 * Don't pull up if the RTE represents a security-barrier view; we
1915 * couldn't prevent information leakage once the RTE's Vars are scattered
1916 * about in the upper query.
1917 */
1918 if (rte->security_barrier)
1919 return false;
1920
1921 /*
1922 * If the subquery is LATERAL, check for pullup restrictions from that.
1923 */
1924 if (rte->lateral)
1925 {
1926 bool restricted;
1927 Relids safe_upper_varnos;
1928
1929 /*
1930 * The subquery's WHERE and JOIN/ON quals mustn't contain any lateral
1931 * references to rels outside a higher outer join (including the case
1932 * where the outer join is within the subquery itself). In such a
1933 * case, pulling up would result in a situation where we need to
1934 * postpone quals from below an outer join to above it, which is
1935 * probably completely wrong and in any case is a complication that
1936 * doesn't seem worth addressing at the moment.
1937 */
1938 if (lowest_outer_join != NULL)
1939 {
1940 restricted = true;
1941 safe_upper_varnos = get_relids_in_jointree((Node *) lowest_outer_join,
1942 true, true);
1943 }
1944 else
1945 {
1946 restricted = false;
1947 safe_upper_varnos = NULL; /* doesn't matter */
1948 }
1949
1951 (Node *) subquery->jointree,
1952 restricted, safe_upper_varnos))
1953 return false;
1954
1955 /*
1956 * If there's an outer join above the LATERAL subquery, also disallow
1957 * pullup if the subquery's targetlist has any references to rels
1958 * outside the outer join, since these might get pulled into quals
1959 * above the subquery (but in or below the outer join) and then lead
1960 * to qual-postponement issues similar to the case checked for above.
1961 * (We wouldn't need to prevent pullup if no such references appear in
1962 * outer-query quals, but we don't have enough info here to check
1963 * that. Also, maybe this restriction could be removed if we forced
1964 * such refs to be wrapped in PlaceHolderVars, even when they're below
1965 * the nearest outer join? But it's a pretty hokey usage, so not
1966 * clear this is worth sweating over.)
1967 *
1968 * If you change this, see also the comments about lateral references
1969 * in pullup_replace_vars_callback().
1970 */
1971 if (lowest_outer_join != NULL)
1972 {
1974 (Node *) subquery->targetList,
1975 1);
1976
1977 if (!bms_is_subset(lvarnos, safe_upper_varnos))
1978 return false;
1979 }
1980 }
1981
1982 /*
1983 * Don't pull up a subquery that has any volatile functions in its
1984 * targetlist. Otherwise we might introduce multiple evaluations of these
1985 * functions, if they get copied to multiple places in the upper query,
1986 * leading to surprising results. (Note: the PlaceHolderVar mechanism
1987 * doesn't quite guarantee single evaluation; else we could pull up anyway
1988 * and just wrap such items in PlaceHolderVars ...)
1989 */
1990 if (contain_volatile_functions((Node *) subquery->targetList))
1991 return false;
1992
1993 return true;
1994}
1995
1996/*
1997 * pull_up_simple_values
1998 * Pull up a single simple VALUES RTE.
1999 *
2000 * jtnode is a RangeTblRef that has been identified as a simple VALUES RTE
2001 * by pull_up_subqueries. We always return a RangeTblRef representing a
2002 * RESULT RTE to replace it (all failure cases should have been detected by
2003 * is_simple_values()). Actually, what we return is just jtnode, because
2004 * we replace the VALUES RTE in the rangetable with the RESULT RTE.
2005 *
2006 * rte is the RangeTblEntry referenced by jtnode. Because of the limited
2007 * possible usage of VALUES RTEs, we do not need the remaining parameters
2008 * of pull_up_subqueries_recurse.
2009 */
2010static Node *
2012{
2013 Query *parse = root->parse;
2014 int varno = ((RangeTblRef *) jtnode)->rtindex;
2015 List *values_list;
2016 List *tlist;
2017 AttrNumber attrno;
2019 ListCell *lc;
2020
2021 Assert(rte->rtekind == RTE_VALUES);
2022 Assert(list_length(rte->values_lists) == 1);
2023
2024 /*
2025 * Need a modifiable copy of the VALUES list to hack on, just in case it's
2026 * multiply referenced.
2027 */
2028 values_list = copyObject(linitial(rte->values_lists));
2029
2030 /*
2031 * The VALUES RTE can't contain any Vars of level zero, let alone any that
2032 * are join aliases, so no need to flatten join alias Vars.
2033 */
2034 Assert(!contain_vars_of_level((Node *) values_list, 0));
2035
2036 /*
2037 * Set up required context data for pullup_replace_vars. In particular,
2038 * we have to make the VALUES list look like a subquery targetlist.
2039 */
2040 tlist = NIL;
2041 attrno = 1;
2042 foreach(lc, values_list)
2043 {
2044 tlist = lappend(tlist,
2045 makeTargetEntry((Expr *) lfirst(lc),
2046 attrno,
2047 NULL,
2048 false));
2049 attrno++;
2050 }
2051 rvcontext.root = root;
2052 rvcontext.targetlist = tlist;
2053 rvcontext.target_rte = rte;
2054 rvcontext.result_relation = 0;
2055 rvcontext.relids = NULL; /* can't be any lateral references here */
2056 rvcontext.nullinfo = NULL;
2057 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
2058 rvcontext.varno = varno;
2059 rvcontext.wrap_option = REPLACE_WRAP_NONE;
2060 /* initialize cache array with indexes 0 .. length(tlist) */
2061 rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
2062 sizeof(Node *));
2063
2064 /*
2065 * Replace all of the top query's references to the RTE's outputs with
2066 * copies of the adjusted VALUES expressions, being careful not to replace
2067 * any of the jointree structure. We can assume there's no outer joins or
2068 * appendrels in the dummy Query that surrounds a VALUES RTE.
2069 */
2070 perform_pullup_replace_vars(root, &rvcontext, NULL);
2071
2072 /*
2073 * There should be no appendrels to fix, nor any outer joins and hence no
2074 * PlaceHolderVars.
2075 */
2076 Assert(root->append_rel_list == NIL);
2077 Assert(root->join_info_list == NIL);
2078 Assert(root->placeholder_list == NIL);
2079
2080 /*
2081 * Replace the VALUES RTE with a RESULT RTE. The VALUES RTE is the only
2082 * rtable entry in the current query level, so this is easy.
2083 */
2084 Assert(list_length(parse->rtable) == 1);
2085
2086 /* Create suitable RTE */
2087 rte = makeNode(RangeTblEntry);
2088 rte->rtekind = RTE_RESULT;
2089 rte->eref = makeAlias("*RESULT*", NIL);
2090
2091 /* Replace rangetable */
2092 parse->rtable = list_make1(rte);
2093
2094 /* We could manufacture a new RangeTblRef, but the one we have is fine */
2095 Assert(varno == 1);
2096
2097 return jtnode;
2098}
2099
2100/*
2101 * is_simple_values
2102 * Check a VALUES RTE in the range table to see if it's simple enough
2103 * to pull up into the parent query.
2104 *
2105 * rte is the RTE_VALUES RangeTblEntry to check.
2106 */
2107static bool
2109{
2110 Assert(rte->rtekind == RTE_VALUES);
2111
2112 /*
2113 * There must be exactly one VALUES list, else it's not semantically
2114 * correct to replace the VALUES RTE with a RESULT RTE, nor would we have
2115 * a unique set of expressions to substitute into the parent query.
2116 */
2117 if (list_length(rte->values_lists) != 1)
2118 return false;
2119
2120 /*
2121 * Because VALUES can't appear under an outer join (or at least, we won't
2122 * try to pull it up if it does), we need not worry about LATERAL, nor
2123 * about validity of PHVs for the VALUES' outputs.
2124 */
2125
2126 /*
2127 * Don't pull up a VALUES that contains any set-returning or volatile
2128 * functions. The considerations here are basically identical to the
2129 * restrictions on a pull-able subquery's targetlist.
2130 */
2133 return false;
2134
2135 /*
2136 * Do not pull up a VALUES that's not the only RTE in its parent query.
2137 * This is actually the only case that the parser will generate at the
2138 * moment, and assuming this is true greatly simplifies
2139 * pull_up_simple_values().
2140 */
2141 if (list_length(root->parse->rtable) != 1 ||
2142 rte != (RangeTblEntry *) linitial(root->parse->rtable))
2143 return false;
2144
2145 return true;
2146}
2147
2148/*
2149 * pull_up_constant_function
2150 * Pull up an RTE_FUNCTION expression that was simplified to a constant.
2151 *
2152 * jtnode is a RangeTblRef that has been identified as a FUNCTION RTE by
2153 * pull_up_subqueries. If its expression is just a Const, hoist that value
2154 * up into the parent query, and replace the RTE_FUNCTION with RTE_RESULT.
2155 *
2156 * In principle we could pull up any immutable expression, but we don't.
2157 * That might result in multiple evaluations of the expression, which could
2158 * be costly if it's not just a Const. Also, the main value of this is
2159 * to let the constant participate in further const-folding, and of course
2160 * that won't happen for a non-Const.
2161 *
2162 * The pulled-up value might need to be wrapped in a PlaceHolderVar if the
2163 * RTE is below an outer join or is part of an appendrel; the extra
2164 * parameters show whether that's needed.
2165 */
2166static Node *
2168 RangeTblEntry *rte,
2169 AppendRelInfo *containing_appendrel)
2170{
2171 Query *parse = root->parse;
2172 RangeTblFunction *rtf;
2173 TypeFuncClass functypclass;
2174 Oid funcrettype;
2175 TupleDesc tupdesc;
2177
2178 /* Fail if the RTE has ORDINALITY - we don't implement that here. */
2179 if (rte->funcordinality)
2180 return jtnode;
2181
2182 /* Fail if RTE isn't a single, simple Const expr */
2183 if (list_length(rte->functions) != 1)
2184 return jtnode;
2186 if (!IsA(rtf->funcexpr, Const))
2187 return jtnode;
2188
2189 /*
2190 * If the function's result is not a scalar, we punt. In principle we
2191 * could break the composite constant value apart into per-column
2192 * constants, but for now it seems not worth the work.
2193 */
2194 if (rtf->funccolcount != 1)
2195 return jtnode; /* definitely composite */
2196
2197 /* If it has a coldeflist, it certainly returns RECORD */
2198 if (rtf->funccolnames != NIL)
2199 return jtnode; /* must be a one-column RECORD type */
2200
2201 functypclass = get_expr_result_type(rtf->funcexpr,
2202 &funcrettype,
2203 &tupdesc);
2204 if (functypclass != TYPEFUNC_SCALAR)
2205 return jtnode; /* must be a one-column composite type */
2206
2207 /* Create context for applying pullup_replace_vars */
2208 rvcontext.root = root;
2209 rvcontext.targetlist = list_make1(makeTargetEntry((Expr *) rtf->funcexpr,
2210 1, /* resno */
2211 NULL, /* resname */
2212 false)); /* resjunk */
2213 rvcontext.target_rte = rte;
2214 rvcontext.result_relation = 0;
2215
2216 /*
2217 * Since this function was reduced to a Const, it doesn't contain any
2218 * lateral references, even if it's marked as LATERAL. This means we
2219 * don't need to fill relids or nullinfo.
2220 */
2221 rvcontext.relids = NULL;
2222 rvcontext.nullinfo = NULL;
2223
2224 rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
2225 rvcontext.varno = ((RangeTblRef *) jtnode)->rtindex;
2226 /* this flag will be set below, if needed */
2227 rvcontext.wrap_option = REPLACE_WRAP_NONE;
2228 /* initialize cache array with indexes 0 .. length(tlist) */
2229 rvcontext.rv_cache = palloc0((list_length(rvcontext.targetlist) + 1) *
2230 sizeof(Node *));
2231
2232 /*
2233 * If the parent query uses grouping sets, we need a PlaceHolderVar for
2234 * each expression of the subquery's targetlist items. (See comments in
2235 * pull_up_simple_subquery().)
2236 */
2237 if (parse->groupingSets)
2238 rvcontext.wrap_option = REPLACE_WRAP_ALL;
2239
2240 /*
2241 * Replace all of the top query's references to the RTE's output with
2242 * copies of the funcexpr, being careful not to replace any of the
2243 * jointree structure.
2244 */
2246 containing_appendrel);
2247
2248 /*
2249 * We don't need to bother with changing PlaceHolderVars in the parent
2250 * query. Their references to the RT index are still good for now, and
2251 * will get removed later if we're able to drop the RTE_RESULT.
2252 */
2253
2254 /*
2255 * Convert the RTE to be RTE_RESULT type, signifying that we don't need to
2256 * scan it anymore, and zero out RTE_FUNCTION-specific fields. Also make
2257 * sure the RTE is not marked LATERAL, since elsewhere we don't expect
2258 * RTE_RESULTs to be LATERAL.
2259 */
2260 rte->rtekind = RTE_RESULT;
2261 rte->functions = NIL;
2262 rte->lateral = false;
2263
2264 /*
2265 * We can reuse the RangeTblRef node.
2266 */
2267 return jtnode;
2268}
2269
2270/*
2271 * is_simple_union_all
2272 * Check a subquery to see if it's a simple UNION ALL.
2273 *
2274 * We require all the setops to be UNION ALL (no mixing) and there can't be
2275 * any datatype coercions involved, ie, all the leaf queries must emit the
2276 * same datatypes.
2277 */
2278static bool
2280{
2281 SetOperationStmt *topop;
2282
2283 /* Let's just make sure it's a valid subselect ... */
2284 if (!IsA(subquery, Query) ||
2285 subquery->commandType != CMD_SELECT)
2286 elog(ERROR, "subquery is bogus");
2287
2288 /* Is it a set-operation query at all? */
2289 topop = castNode(SetOperationStmt, subquery->setOperations);
2290 if (!topop)
2291 return false;
2292
2293 /* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */
2294 if (subquery->sortClause ||
2295 subquery->limitOffset ||
2296 subquery->limitCount ||
2297 subquery->rowMarks ||
2298 subquery->cteList)
2299 return false;
2300
2301 /* Recursively check the tree of set operations */
2302 return is_simple_union_all_recurse((Node *) topop, subquery,
2303 topop->colTypes);
2304}
2305
2306static bool
2307is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
2308{
2309 /* Since this function recurses, it could be driven to stack overflow. */
2311
2312 if (IsA(setOp, RangeTblRef))
2313 {
2314 RangeTblRef *rtr = (RangeTblRef *) setOp;
2315 RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable);
2316 Query *subquery = rte->subquery;
2317
2318 Assert(subquery != NULL);
2319
2320 /* Leaf nodes are OK if they match the toplevel column types */
2321 /* We don't have to compare typmods or collations here */
2322 return tlist_same_datatypes(subquery->targetList, colTypes, true);
2323 }
2324 else if (IsA(setOp, SetOperationStmt))
2325 {
2326 SetOperationStmt *op = (SetOperationStmt *) setOp;
2327
2328 /* Must be UNION ALL */
2329 if (op->op != SETOP_UNION || !op->all)
2330 return false;
2331
2332 /* Recurse to check inputs */
2333 return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) &&
2334 is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes);
2335 }
2336 else
2337 {
2338 elog(ERROR, "unrecognized node type: %d",
2339 (int) nodeTag(setOp));
2340 return false; /* keep compiler quiet */
2341 }
2342}
2343
2344/*
2345 * is_safe_append_member
2346 * Check a subquery that is a leaf of a UNION ALL appendrel to see if it's
2347 * safe to pull up.
2348 */
2349static bool
2351{
2352 FromExpr *jtnode;
2353
2354 /*
2355 * It's only safe to pull up the child if its jointree contains exactly
2356 * one RTE, else the AppendRelInfo data structure breaks. The one base RTE
2357 * could be buried in several levels of FromExpr, however. Also, if the
2358 * child's jointree is completely empty, we can pull up because
2359 * pull_up_simple_subquery will insert a single RTE_RESULT RTE instead.
2360 *
2361 * Also, the child can't have any WHERE quals because there's no place to
2362 * put them in an appendrel. (This is a bit annoying...) If we didn't
2363 * need to check this, we'd just test whether get_relids_in_jointree()
2364 * yields a singleton set, to be more consistent with the coding of
2365 * fix_append_rel_relids().
2366 */
2367 jtnode = subquery->jointree;
2368 Assert(IsA(jtnode, FromExpr));
2369 /* Check the completely-empty case */
2370 if (jtnode->fromlist == NIL && jtnode->quals == NULL)
2371 return true;
2372 /* Check the more general case */
2373 while (IsA(jtnode, FromExpr))
2374 {
2375 if (jtnode->quals != NULL)
2376 return false;
2377 if (list_length(jtnode->fromlist) != 1)
2378 return false;
2379 jtnode = linitial(jtnode->fromlist);
2380 }
2381 if (!IsA(jtnode, RangeTblRef))
2382 return false;
2383
2384 return true;
2385}
2386
2387/*
2388 * jointree_contains_lateral_outer_refs
2389 * Check for disallowed lateral references in a jointree's quals
2390 *
2391 * If restricted is false, all level-1 Vars are allowed (but we still must
2392 * search the jointree, since it might contain outer joins below which there
2393 * will be restrictions). If restricted is true, return true when any qual
2394 * in the jointree contains level-1 Vars coming from outside the rels listed
2395 * in safe_upper_varnos.
2396 */
2397static bool
2399 bool restricted,
2400 Relids safe_upper_varnos)
2401{
2402 if (jtnode == NULL)
2403 return false;
2404 if (IsA(jtnode, RangeTblRef))
2405 return false;
2406 else if (IsA(jtnode, FromExpr))
2407 {
2408 FromExpr *f = (FromExpr *) jtnode;
2409 ListCell *l;
2410
2411 /* First, recurse to check child joins */
2412 foreach(l, f->fromlist)
2413 {
2415 lfirst(l),
2416 restricted,
2417 safe_upper_varnos))
2418 return true;
2419 }
2420
2421 /* Then check the top-level quals */
2422 if (restricted &&
2424 safe_upper_varnos))
2425 return true;
2426 }
2427 else if (IsA(jtnode, JoinExpr))
2428 {
2429 JoinExpr *j = (JoinExpr *) jtnode;
2430
2431 /*
2432 * If this is an outer join, we mustn't allow any upper lateral
2433 * references in or below it.
2434 */
2435 if (j->jointype != JOIN_INNER)
2436 {
2437 restricted = true;
2438 safe_upper_varnos = NULL;
2439 }
2440
2441 /* Check the child joins */
2443 j->larg,
2444 restricted,
2445 safe_upper_varnos))
2446 return true;
2448 j->rarg,
2449 restricted,
2450 safe_upper_varnos))
2451 return true;
2452
2453 /* Check the JOIN's qual clauses */
2454 if (restricted &&
2456 safe_upper_varnos))
2457 return true;
2458 }
2459 else
2460 elog(ERROR, "unrecognized node type: %d",
2461 (int) nodeTag(jtnode));
2462 return false;
2463}
2464
2465/*
2466 * Perform pullup_replace_vars everyplace it's needed in the query tree.
2467 *
2468 * Caller has already filled *rvcontext with data describing what to
2469 * substitute for Vars referencing the target subquery. In addition
2470 * we need the identity of the containing appendrel if any.
2471 */
2472static void
2474 pullup_replace_vars_context *rvcontext,
2475 AppendRelInfo *containing_appendrel)
2476{
2477 Query *parse = root->parse;
2478 ListCell *lc;
2479
2480 /*
2481 * If we are considering an appendrel child subquery (that is, a UNION ALL
2482 * member query that we're pulling up), then the only part of the upper
2483 * query that could reference the child yet is the translated_vars list of
2484 * the associated AppendRelInfo. Furthermore, we do not want to force use
2485 * of PHVs in the AppendRelInfo --- there isn't any outer join between.
2486 */
2487 if (containing_appendrel)
2488 {
2489 ReplaceWrapOption save_wrap_option = rvcontext->wrap_option;
2490
2491 rvcontext->wrap_option = REPLACE_WRAP_NONE;
2492 containing_appendrel->translated_vars = (List *)
2493 pullup_replace_vars((Node *) containing_appendrel->translated_vars,
2494 rvcontext);
2495 rvcontext->wrap_option = save_wrap_option;
2496 return;
2497 }
2498
2499 /*
2500 * Replace all of the top query's references to the subquery's outputs
2501 * with copies of the adjusted subtlist items, being careful not to
2502 * replace any of the jointree structure. (This'd be a lot cleaner if we
2503 * could use query_tree_mutator.) We have to use PHVs in the targetList,
2504 * returningList, and havingQual, since those are certainly above any
2505 * outer join. replace_vars_in_jointree tracks its location in the
2506 * jointree and uses PHVs or not appropriately.
2507 */
2508 parse->targetList = (List *)
2509 pullup_replace_vars((Node *) parse->targetList, rvcontext);
2510 parse->returningList = (List *)
2511 pullup_replace_vars((Node *) parse->returningList, rvcontext);
2512
2513 if (parse->onConflict)
2514 {
2515 parse->onConflict->onConflictSet = (List *)
2516 pullup_replace_vars((Node *) parse->onConflict->onConflictSet,
2517 rvcontext);
2518 parse->onConflict->onConflictWhere =
2519 pullup_replace_vars(parse->onConflict->onConflictWhere,
2520 rvcontext);
2521
2522 /*
2523 * We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist
2524 * can't contain any references to a subquery.
2525 */
2526 }
2527 if (parse->mergeActionList)
2528 {
2529 foreach(lc, parse->mergeActionList)
2530 {
2531 MergeAction *action = lfirst(lc);
2532
2533 action->qual = pullup_replace_vars(action->qual, rvcontext);
2534 action->targetList = (List *)
2535 pullup_replace_vars((Node *) action->targetList, rvcontext);
2536 }
2537 }
2538 parse->mergeJoinCondition = pullup_replace_vars(parse->mergeJoinCondition,
2539 rvcontext);
2540 replace_vars_in_jointree((Node *) parse->jointree, rvcontext);
2541 Assert(parse->setOperations == NULL);
2542 parse->havingQual = pullup_replace_vars(parse->havingQual, rvcontext);
2543
2544 /*
2545 * Replace references in the translated_vars lists of appendrels.
2546 */
2547 foreach(lc, root->append_rel_list)
2548 {
2549 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
2550
2551 appinfo->translated_vars = (List *)
2552 pullup_replace_vars((Node *) appinfo->translated_vars, rvcontext);
2553 }
2554
2555 /*
2556 * Replace references in the joinaliasvars lists of join RTEs and the
2557 * groupexprs list of group RTE.
2558 */
2559 foreach(lc, parse->rtable)
2560 {
2561 RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc);
2562
2563 if (otherrte->rtekind == RTE_JOIN)
2564 otherrte->joinaliasvars = (List *)
2565 pullup_replace_vars((Node *) otherrte->joinaliasvars,
2566 rvcontext);
2567 else if (otherrte->rtekind == RTE_GROUP)
2568 otherrte->groupexprs = (List *)
2569 pullup_replace_vars((Node *) otherrte->groupexprs,
2570 rvcontext);
2571 }
2572}
2573
2574/*
2575 * Helper routine for perform_pullup_replace_vars: do pullup_replace_vars on
2576 * every expression in the jointree, without changing the jointree structure
2577 * itself. Ugly, but there's no other way...
2578 */
2579static void
2582{
2583 if (jtnode == NULL)
2584 return;
2585 if (IsA(jtnode, RangeTblRef))
2586 {
2587 /*
2588 * If the RangeTblRef refers to a LATERAL subquery (that isn't the
2589 * same subquery we're pulling up), it might contain references to the
2590 * target subquery, which we must replace. We drive this from the
2591 * jointree scan, rather than a scan of the rtable, so that we can
2592 * avoid processing no-longer-referenced RTEs.
2593 */
2594 int varno = ((RangeTblRef *) jtnode)->rtindex;
2595
2596 if (varno != context->varno) /* ignore target subquery itself */
2597 {
2598 RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable);
2599
2600 Assert(rte != context->target_rte);
2601 if (rte->lateral)
2602 {
2603 switch (rte->rtekind)
2604 {
2605 case RTE_RELATION:
2606 /* shouldn't be marked LATERAL unless tablesample */
2607 Assert(rte->tablesample);
2610 context);
2611 break;
2612 case RTE_SUBQUERY:
2613 rte->subquery =
2615 context);
2616 break;
2617 case RTE_FUNCTION:
2618 rte->functions = (List *)
2620 context);
2621 break;
2622 case RTE_TABLEFUNC:
2623 rte->tablefunc = (TableFunc *)
2625 context);
2626 break;
2627 case RTE_VALUES:
2628 rte->values_lists = (List *)
2630 context);
2631 break;
2632 case RTE_JOIN:
2633 case RTE_CTE:
2635 case RTE_RESULT:
2636 case RTE_GROUP:
2637 /* these shouldn't be marked LATERAL */
2638 Assert(false);
2639 break;
2640 }
2641 }
2642 }
2643 }
2644 else if (IsA(jtnode, FromExpr))
2645 {
2646 FromExpr *f = (FromExpr *) jtnode;
2647 ListCell *l;
2648
2649 foreach(l, f->fromlist)
2650 replace_vars_in_jointree(lfirst(l), context);
2651 f->quals = pullup_replace_vars(f->quals, context);
2652 }
2653 else if (IsA(jtnode, JoinExpr))
2654 {
2655 JoinExpr *j = (JoinExpr *) jtnode;
2656 ReplaceWrapOption save_wrap_option = context->wrap_option;
2657
2658 replace_vars_in_jointree(j->larg, context);
2659 replace_vars_in_jointree(j->rarg, context);
2660
2661 /*
2662 * Use PHVs within the join quals of a full join for variable-free
2663 * expressions. Otherwise, we cannot identify which side of the join
2664 * a pulled-up variable-free expression came from, which can lead to
2665 * failure to make a plan at all because none of the quals appear to
2666 * be mergeable or hashable conditions.
2667 */
2668 if (j->jointype == JOIN_FULL)
2670
2671 j->quals = pullup_replace_vars(j->quals, context);
2672
2673 context->wrap_option = save_wrap_option;
2674 }
2675 else
2676 elog(ERROR, "unrecognized node type: %d",
2677 (int) nodeTag(jtnode));
2678}
2679
2680/*
2681 * Apply pullup variable replacement throughout an expression tree
2682 *
2683 * Returns a modified copy of the tree, so this can't be used where we
2684 * need to do in-place replacement.
2685 */
2686static Node *
2688{
2689 return replace_rte_variables(expr,
2690 context->varno, 0,
2692 context,
2693 context->outer_hasSubLinks);
2694}
2695
2696static Node *
2699{
2701 int varattno = var->varattno;
2702 bool need_phv;
2703 Node *newnode;
2704
2705 /* System columns are not replaced. */
2706 if (varattno < InvalidAttrNumber)
2707 return (Node *) copyObject(var);
2708
2709 /*
2710 * We need a PlaceHolderVar if the Var-to-be-replaced has nonempty
2711 * varnullingrels (unless we find below that the replacement expression is
2712 * a Var or PlaceHolderVar that we can just add the nullingrels to). We
2713 * also need one if the caller has instructed us that certain expression
2714 * replacements need to be wrapped for identification purposes.
2715 */
2716 need_phv = (var->varnullingrels != NULL) ||
2717 (rcon->wrap_option != REPLACE_WRAP_NONE);
2718
2719 /*
2720 * If PlaceHolderVars are needed, we cache the modified expressions in
2721 * rcon->rv_cache[]. This is not in hopes of any material speed gain
2722 * within this function, but to avoid generating identical PHVs with
2723 * different IDs. That would result in duplicate evaluations at runtime,
2724 * and possibly prevent optimizations that rely on recognizing different
2725 * references to the same subquery output as being equal(). So it's worth
2726 * a bit of extra effort to avoid it.
2727 *
2728 * The cached items have phlevelsup = 0 and phnullingrels = NULL; we'll
2729 * copy them and adjust those values for this reference site below.
2730 */
2731 if (need_phv &&
2732 varattno >= InvalidAttrNumber &&
2733 varattno <= list_length(rcon->targetlist) &&
2734 rcon->rv_cache[varattno] != NULL)
2735 {
2736 /* Just copy the entry and fall through to adjust phlevelsup etc */
2737 newnode = copyObject(rcon->rv_cache[varattno]);
2738 }
2739 else
2740 {
2741 /*
2742 * Generate the replacement expression. This takes care of expanding
2743 * wholerow references and dealing with non-default varreturningtype.
2744 */
2745 newnode = ReplaceVarFromTargetList(var,
2746 rcon->target_rte,
2747 rcon->targetlist,
2748 rcon->result_relation,
2750 0);
2751
2752 /* Insert PlaceHolderVar if needed */
2753 if (need_phv)
2754 {
2755 bool wrap;
2756
2757 if (rcon->wrap_option == REPLACE_WRAP_ALL)
2758 {
2759 /* Caller told us to wrap all expressions in a PlaceHolderVar */
2760 wrap = true;
2761 }
2762 else if (varattno == InvalidAttrNumber)
2763 {
2764 /*
2765 * Insert PlaceHolderVar for whole-tuple reference. Notice
2766 * that we are wrapping one PlaceHolderVar around the whole
2767 * RowExpr, rather than putting one around each element of the
2768 * row. This is because we need the expression to yield NULL,
2769 * not ROW(NULL,NULL,...) when it is forced to null by an
2770 * outer join.
2771 */
2772 wrap = true;
2773 }
2774 else if (newnode && IsA(newnode, Var) &&
2775 ((Var *) newnode)->varlevelsup == 0)
2776 {
2777 /*
2778 * Simple Vars always escape being wrapped, unless they are
2779 * lateral references to something outside the subquery being
2780 * pulled up and the referenced rel is not under the same
2781 * lowest nulling outer join.
2782 */
2783 wrap = false;
2784 if (rcon->target_rte->lateral &&
2785 !bms_is_member(((Var *) newnode)->varno, rcon->relids))
2786 {
2787 nullingrel_info *nullinfo = rcon->nullinfo;
2788 int lvarno = ((Var *) newnode)->varno;
2789
2790 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2791 if (!bms_is_subset(nullinfo->nullingrels[rcon->varno],
2792 nullinfo->nullingrels[lvarno]))
2793 wrap = true;
2794 }
2795 }
2796 else if (newnode && IsA(newnode, PlaceHolderVar) &&
2797 ((PlaceHolderVar *) newnode)->phlevelsup == 0)
2798 {
2799 /* The same rules apply for a PlaceHolderVar */
2800 wrap = false;
2801 if (rcon->target_rte->lateral &&
2802 !bms_is_subset(((PlaceHolderVar *) newnode)->phrels,
2803 rcon->relids))
2804 {
2805 nullingrel_info *nullinfo = rcon->nullinfo;
2806 Relids lvarnos = ((PlaceHolderVar *) newnode)->phrels;
2807 int lvarno;
2808
2809 lvarno = -1;
2810 while ((lvarno = bms_next_member(lvarnos, lvarno)) >= 0)
2811 {
2812 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2813 if (!bms_is_subset(nullinfo->nullingrels[rcon->varno],
2814 nullinfo->nullingrels[lvarno]))
2815 {
2816 wrap = true;
2817 break;
2818 }
2819 }
2820 }
2821 }
2822 else
2823 {
2824 /*
2825 * If the node contains Var(s) or PlaceHolderVar(s) of the
2826 * subquery being pulled up, or of rels that are under the
2827 * same lowest nulling outer join as the subquery, and does
2828 * not contain any non-strict constructs, then instead of
2829 * adding a PHV on top we can add the required nullingrels to
2830 * those Vars/PHVs. (This is fundamentally a generalization
2831 * of the above cases for bare Vars and PHVs.)
2832 *
2833 * This test is somewhat expensive, but it avoids pessimizing
2834 * the plan in cases where the nullingrels get removed again
2835 * later by outer join reduction.
2836 *
2837 * Note that we don't force wrapping of expressions containing
2838 * lateral references, so long as they also contain Vars/PHVs
2839 * of the subquery, or of rels that are under the same lowest
2840 * nulling outer join as the subquery. This is okay because
2841 * of the restriction to strict constructs: if those Vars/PHVs
2842 * have been forced to NULL by an outer join then the end
2843 * result of the expression will be NULL too, regardless of
2844 * the lateral references. So it's not necessary to force the
2845 * expression to be evaluated below the outer join. This can
2846 * be a very valuable optimization, because it may allow us to
2847 * avoid using a nested loop to pass the lateral reference
2848 * down.
2849 *
2850 * This analysis could be tighter: in particular, a non-strict
2851 * construct hidden within a lower-level PlaceHolderVar is not
2852 * reason to add another PHV. But for now it doesn't seem
2853 * worth the code to be more exact. This is also why it's
2854 * preferable to handle bare PHVs in the above branch, rather
2855 * than this branch. We also prefer to handle bare Vars in a
2856 * separate branch, as it's cheaper this way and parallels the
2857 * handling of PHVs.
2858 *
2859 * For a LATERAL subquery, we have to check the actual var
2860 * membership of the node, but if it's non-lateral then any
2861 * level-zero var must belong to the subquery.
2862 */
2863 bool contain_nullable_vars = false;
2864
2865 if (!rcon->target_rte->lateral)
2866 {
2867 if (contain_vars_of_level(newnode, 0))
2868 contain_nullable_vars = true;
2869 }
2870 else
2871 {
2872 Relids all_varnos;
2873
2874 all_varnos = pull_varnos(rcon->root, newnode);
2875 if (bms_overlap(all_varnos, rcon->relids))
2876 contain_nullable_vars = true;
2877 else
2878 {
2879 nullingrel_info *nullinfo = rcon->nullinfo;
2880 int varno;
2881
2882 varno = -1;
2883 while ((varno = bms_next_member(all_varnos, varno)) >= 0)
2884 {
2885 Assert(varno > 0 && varno <= nullinfo->rtlength);
2886 if (bms_is_subset(nullinfo->nullingrels[rcon->varno],
2887 nullinfo->nullingrels[varno]))
2888 {
2889 contain_nullable_vars = true;
2890 break;
2891 }
2892 }
2893 }
2894 }
2895
2896 if (contain_nullable_vars &&
2898 {
2899 /* No wrap needed */
2900 wrap = false;
2901 }
2902 else
2903 {
2904 /* Else wrap it in a PlaceHolderVar */
2905 wrap = true;
2906 }
2907 }
2908
2909 if (wrap)
2910 {
2911 newnode = (Node *)
2913 (Expr *) newnode,
2914 bms_make_singleton(rcon->varno));
2915
2916 /*
2917 * Cache it if possible (ie, if the attno is in range, which
2918 * it probably always should be).
2919 */
2920 if (varattno >= InvalidAttrNumber &&
2921 varattno <= list_length(rcon->targetlist))
2922 rcon->rv_cache[varattno] = copyObject(newnode);
2923 }
2924 }
2925 }
2926
2927 /* Propagate any varnullingrels into the replacement expression */
2928 if (var->varnullingrels != NULL)
2929 {
2930 if (IsA(newnode, Var))
2931 {
2932 Var *newvar = (Var *) newnode;
2933
2934 Assert(newvar->varlevelsup == 0);
2935 newvar->varnullingrels = bms_add_members(newvar->varnullingrels,
2936 var->varnullingrels);
2937 }
2938 else if (IsA(newnode, PlaceHolderVar))
2939 {
2940 PlaceHolderVar *newphv = (PlaceHolderVar *) newnode;
2941
2942 Assert(newphv->phlevelsup == 0);
2944 var->varnullingrels);
2945 }
2946 else
2947 {
2948 /*
2949 * There should be Vars/PHVs within the expression that we can
2950 * modify. Vars/PHVs of the subquery should have the full
2951 * var->varnullingrels added to them, but if there are lateral
2952 * references within the expression, those must be marked with
2953 * only the nullingrels that potentially apply to them. (This
2954 * corresponds to the fact that the expression will now be
2955 * evaluated at the join level of the Var that we are replacing:
2956 * the lateral references may have bubbled up through fewer outer
2957 * joins than the subquery's Vars have. Per the discussion above,
2958 * we'll still get the right answers.) That relid set could be
2959 * different for different lateral relations, so we have to do
2960 * this work for each one.
2961 *
2962 * (Currently, the restrictions in is_simple_subquery() mean that
2963 * at most we have to remove the lowest outer join's relid from
2964 * the nullingrels of a lateral reference. However, we might
2965 * relax those restrictions someday, so let's do this right.)
2966 */
2967 if (rcon->target_rte->lateral)
2968 {
2969 nullingrel_info *nullinfo = rcon->nullinfo;
2970 Relids lvarnos;
2971 int lvarno;
2972
2973 /*
2974 * Identify lateral varnos used within newnode. We must do
2975 * this before injecting var->varnullingrels into the tree.
2976 */
2977 lvarnos = pull_varnos(rcon->root, newnode);
2978 lvarnos = bms_del_members(lvarnos, rcon->relids);
2979 /* For each one, add relevant nullingrels if any */
2980 lvarno = -1;
2981 while ((lvarno = bms_next_member(lvarnos, lvarno)) >= 0)
2982 {
2983 Relids lnullingrels;
2984
2985 Assert(lvarno > 0 && lvarno <= nullinfo->rtlength);
2986 lnullingrels = bms_intersect(var->varnullingrels,
2987 nullinfo->nullingrels[lvarno]);
2988 if (!bms_is_empty(lnullingrels))
2989 newnode = add_nulling_relids(newnode,
2990 bms_make_singleton(lvarno),
2991 lnullingrels);
2992 }
2993 }
2994
2995 /* Finally, deal with Vars/PHVs of the subquery itself */
2996 newnode = add_nulling_relids(newnode,
2997 rcon->relids,
2998 var->varnullingrels);
2999 /* Assert we did put the varnullingrels into the expression */
3000 Assert(bms_is_subset(var->varnullingrels,
3001 pull_varnos(rcon->root, newnode)));
3002 }
3003 }
3004
3005 /* Must adjust varlevelsup if replaced Var is within a subquery */
3006 if (var->varlevelsup > 0)
3007 IncrementVarSublevelsUp(newnode, var->varlevelsup, 0);
3008
3009 return newnode;
3010}
3011
3012/*
3013 * Apply pullup variable replacement to a subquery
3014 *
3015 * This needs to be different from pullup_replace_vars() because
3016 * replace_rte_variables will think that it shouldn't increment sublevels_up
3017 * before entering the Query; so we need to call it with sublevels_up == 1.
3018 */
3019static Query *
3022{
3023 Assert(IsA(query, Query));
3024 return (Query *) replace_rte_variables((Node *) query,
3025 context->varno, 1,
3027 context,
3028 NULL);
3029}
3030
3031
3032/*
3033 * flatten_simple_union_all
3034 * Try to optimize top-level UNION ALL structure into an appendrel
3035 *
3036 * If a query's setOperations tree consists entirely of simple UNION ALL
3037 * operations, flatten it into an append relation, which we can process more
3038 * intelligently than the general setops case. Otherwise, do nothing.
3039 *
3040 * In most cases, this can succeed only for a top-level query, because for a
3041 * subquery in FROM, the parent query's invocation of pull_up_subqueries would
3042 * already have flattened the UNION via pull_up_simple_union_all. But there
3043 * are a few cases we can support here but not in that code path, for example
3044 * when the subquery also contains ORDER BY.
3045 */
3046void
3048{
3049 Query *parse = root->parse;
3050 SetOperationStmt *topop;
3051 Node *leftmostjtnode;
3052 int leftmostRTI;
3053 RangeTblEntry *leftmostRTE;
3054 int childRTI;
3055 RangeTblEntry *childRTE;
3056 RangeTblRef *rtr;
3057
3058 /* Shouldn't be called unless query has setops */
3059 topop = castNode(SetOperationStmt, parse->setOperations);
3060 Assert(topop);
3061
3062 /* Can't optimize away a recursive UNION */
3063 if (root->hasRecursion)
3064 return;
3065
3066 /*
3067 * Recursively check the tree of set operations. If not all UNION ALL
3068 * with identical column types, punt.
3069 */
3070 if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes))
3071 return;
3072
3073 /*
3074 * Locate the leftmost leaf query in the setops tree. The upper query's
3075 * Vars all refer to this RTE (see transformSetOperationStmt).
3076 */
3077 leftmostjtnode = topop->larg;
3078 while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt))
3079 leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg;
3080 Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef));
3081 leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex;
3082 leftmostRTE = rt_fetch(leftmostRTI, parse->rtable);
3083 Assert(leftmostRTE->rtekind == RTE_SUBQUERY);
3084
3085 /*
3086 * Make a copy of the leftmost RTE and add it to the rtable. This copy
3087 * will represent the leftmost leaf query in its capacity as a member of
3088 * the appendrel. The original will represent the appendrel as a whole.
3089 * (We must do things this way because the upper query's Vars have to be
3090 * seen as referring to the whole appendrel.)
3091 */
3092 childRTE = copyObject(leftmostRTE);
3093 parse->rtable = lappend(parse->rtable, childRTE);
3094 childRTI = list_length(parse->rtable);
3095
3096 /* Modify the setops tree to reference the child copy */
3097 ((RangeTblRef *) leftmostjtnode)->rtindex = childRTI;
3098
3099 /* Modify the formerly-leftmost RTE to mark it as an appendrel parent */
3100 leftmostRTE->inh = true;
3101
3102 /*
3103 * Form a RangeTblRef for the appendrel, and insert it into FROM. The top
3104 * Query of a setops tree should have had an empty FromClause initially.
3105 */
3106 rtr = makeNode(RangeTblRef);
3107 rtr->rtindex = leftmostRTI;
3108 Assert(parse->jointree->fromlist == NIL);
3109 parse->jointree->fromlist = list_make1(rtr);
3110
3111 /*
3112 * Now pretend the query has no setops. We must do this before trying to
3113 * do subquery pullup, because of Assert in pull_up_simple_subquery.
3114 */
3115 parse->setOperations = NULL;
3116
3117 /*
3118 * Build AppendRelInfo information, and apply pull_up_subqueries to the
3119 * leaf queries of the UNION ALL. (We must do that now because they
3120 * weren't previously referenced by the jointree, and so were missed by
3121 * the main invocation of pull_up_subqueries.)
3122 */
3123 pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0);
3124}
3125
3126
3127/*
3128 * reduce_outer_joins
3129 * Attempt to reduce outer joins to plain inner joins.
3130 *
3131 * The idea here is that given a query like
3132 * SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
3133 * we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE
3134 * is strict. The strict operator will always return NULL, causing the outer
3135 * WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's
3136 * columns. Therefore, there's no need for the join to produce null-extended
3137 * rows in the first place --- which makes it a plain join not an outer join.
3138 * (This scenario may not be very likely in a query written out by hand, but
3139 * it's reasonably likely when pushing quals down into complex views.)
3140 *
3141 * More generally, an outer join can be reduced in strength if there is a
3142 * strict qual above it in the qual tree that constrains a Var from the
3143 * nullable side of the join to be non-null. (For FULL joins this applies
3144 * to each side separately.)
3145 *
3146 * Another transformation we apply here is to recognize cases like
3147 * SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
3148 * If the join clause is strict for b.y, then only null-extended rows could
3149 * pass the upper WHERE, and we can conclude that what the query is really
3150 * specifying is an anti-semijoin. We change the join type from JOIN_LEFT
3151 * to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be
3152 * removed to prevent bogus selectivity calculations, but we leave it to
3153 * distribute_qual_to_rels to get rid of such clauses.
3154 *
3155 * Also, we get rid of JOIN_RIGHT cases by flipping them around to become
3156 * JOIN_LEFT. This saves some code here and in some later planner routines;
3157 * the main benefit is to reduce the number of jointypes that can appear in
3158 * SpecialJoinInfo nodes. Note that we can still generate Paths and Plans
3159 * that use JOIN_RIGHT (or JOIN_RIGHT_ANTI) by switching the inputs again.
3160 *
3161 * To ease recognition of strict qual clauses, we require this routine to be
3162 * run after expression preprocessing (i.e., qual canonicalization and JOIN
3163 * alias-var expansion).
3164 */
3165void
3167{
3170 ListCell *lc;
3171
3172 /*
3173 * To avoid doing strictness checks on more quals than necessary, we want
3174 * to stop descending the jointree as soon as there are no outer joins
3175 * below our current point. This consideration forces a two-pass process.
3176 * The first pass gathers information about which base rels appear below
3177 * each side of each join clause, and about whether there are outer
3178 * join(s) below each side of each join clause. The second pass examines
3179 * qual clauses and changes join types as it descends the tree.
3180 */
3181 state1 = reduce_outer_joins_pass1((Node *) root->parse->jointree);
3182
3183 /* planner.c shouldn't have called me if no outer joins */
3184 if (state1 == NULL || !state1->contains_outer)
3185 elog(ERROR, "so where are the outer joins?");
3186
3187 state2.inner_reduced = NULL;
3188 state2.partial_reduced = NIL;
3189
3190 reduce_outer_joins_pass2((Node *) root->parse->jointree,
3191 state1, &state2,
3192 root, NULL, NIL);
3193
3194 /*
3195 * If we successfully reduced the strength of any outer joins, we must
3196 * remove references to those joins as nulling rels. This is handled as
3197 * an additional pass, for simplicity and because we can handle all
3198 * fully-reduced joins in a single pass over the parse tree.
3199 */
3200 if (!bms_is_empty(state2.inner_reduced))
3201 {
3202 root->parse = (Query *)
3203 remove_nulling_relids((Node *) root->parse,
3204 state2.inner_reduced,
3205 NULL);
3206 /* There could be references in the append_rel_list, too */
3207 root->append_rel_list = (List *)
3208 remove_nulling_relids((Node *) root->append_rel_list,
3209 state2.inner_reduced,
3210 NULL);
3211 }
3212
3213 /*
3214 * Partially-reduced full joins have to be done one at a time, since
3215 * they'll each need a different setting of except_relids.
3216 */
3217 foreach(lc, state2.partial_reduced)
3218 {
3220 Relids full_join_relids = bms_make_singleton(statep->full_join_rti);
3221
3222 root->parse = (Query *)
3223 remove_nulling_relids((Node *) root->parse,
3224 full_join_relids,
3225 statep->unreduced_side);
3226 root->append_rel_list = (List *)
3227 remove_nulling_relids((Node *) root->append_rel_list,
3228 full_join_relids,
3229 statep->unreduced_side);
3230 }
3231}
3232
3233/*
3234 * reduce_outer_joins_pass1 - phase 1 data collection
3235 *
3236 * Returns a state node describing the given jointree node.
3237 */
3240{
3242
3245 result->relids = NULL;
3246 result->contains_outer = false;
3247 result->sub_states = NIL;
3248
3249 if (jtnode == NULL)
3250 return result;
3251 if (IsA(jtnode, RangeTblRef))
3252 {
3253 int varno = ((RangeTblRef *) jtnode)->rtindex;
3254
3255 result->relids = bms_make_singleton(varno);
3256 }
3257 else if (IsA(jtnode, FromExpr))
3258 {
3259 FromExpr *f = (FromExpr *) jtnode;
3260 ListCell *l;
3261
3262 foreach(l, f->fromlist)
3263 {
3265
3266 sub_state = reduce_outer_joins_pass1(lfirst(l));
3267 result->relids = bms_add_members(result->relids,
3268 sub_state->relids);
3269 result->contains_outer |= sub_state->contains_outer;
3270 result->sub_states = lappend(result->sub_states, sub_state);
3271 }
3272 }
3273 else if (IsA(jtnode, JoinExpr))
3274 {
3275 JoinExpr *j = (JoinExpr *) jtnode;
3277
3278 /* join's own RT index is not wanted in result->relids */
3279 if (IS_OUTER_JOIN(j->jointype))
3280 result->contains_outer = true;
3281
3282 sub_state = reduce_outer_joins_pass1(j->larg);
3283 result->relids = bms_add_members(result->relids,
3284 sub_state->relids);
3285 result->contains_outer |= sub_state->contains_outer;
3286 result->sub_states = lappend(result->sub_states, sub_state);
3287
3288 sub_state = reduce_outer_joins_pass1(j->rarg);
3289 result->relids = bms_add_members(result->relids,
3290 sub_state->relids);
3291 result->contains_outer |= sub_state->contains_outer;
3292 result->sub_states = lappend(result->sub_states, sub_state);
3293 }
3294 else
3295 elog(ERROR, "unrecognized node type: %d",
3296 (int) nodeTag(jtnode));
3297 return result;
3298}
3299
3300/*
3301 * reduce_outer_joins_pass2 - phase 2 processing
3302 *
3303 * jtnode: current jointree node
3304 * state1: state data collected by phase 1 for this node
3305 * state2: where to accumulate info about successfully-reduced joins
3306 * root: toplevel planner state
3307 * nonnullable_rels: set of base relids forced non-null by upper quals
3308 * forced_null_vars: multibitmapset of Vars forced null by upper quals
3309 *
3310 * Returns info in state2 about outer joins that were successfully simplified.
3311 * Joins that were fully reduced to inner joins are all added to
3312 * state2->inner_reduced. If a full join is reduced to a left join,
3313 * it needs its own entry in state2->partial_reduced, since that will
3314 * require custom processing to remove only the correct nullingrel markers.
3315 */
3316static void
3321 Relids nonnullable_rels,
3322 List *forced_null_vars)
3323{
3324 /*
3325 * pass 2 should never descend as far as an empty subnode or base rel,
3326 * because it's only called on subtrees marked as contains_outer.
3327 */
3328 if (jtnode == NULL)
3329 elog(ERROR, "reached empty jointree");
3330 if (IsA(jtnode, RangeTblRef))
3331 elog(ERROR, "reached base rel");
3332 else if (IsA(jtnode, FromExpr))
3333 {
3334 FromExpr *f = (FromExpr *) jtnode;
3335 ListCell *l;
3336 ListCell *s;
3337 Relids pass_nonnullable_rels;
3338 List *pass_forced_null_vars;
3339
3340 /* Scan quals to see if we can add any constraints */
3341 pass_nonnullable_rels = find_nonnullable_rels(f->quals);
3342 pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels,
3343 nonnullable_rels);
3344 pass_forced_null_vars = find_forced_null_vars(f->quals);
3345 pass_forced_null_vars = mbms_add_members(pass_forced_null_vars,
3346 forced_null_vars);
3347 /* And recurse --- but only into interesting subtrees */
3349 forboth(l, f->fromlist, s, state1->sub_states)
3350 {
3351 reduce_outer_joins_pass1_state *sub_state = lfirst(s);
3352
3353 if (sub_state->contains_outer)
3354 reduce_outer_joins_pass2(lfirst(l), sub_state,
3355 state2, root,
3356 pass_nonnullable_rels,
3357 pass_forced_null_vars);
3358 }
3359 bms_free(pass_nonnullable_rels);
3360 /* can't so easily clean up var lists, unfortunately */
3361 }
3362 else if (IsA(jtnode, JoinExpr))
3363 {
3364 JoinExpr *j = (JoinExpr *) jtnode;
3365 int rtindex = j->rtindex;
3366 JoinType jointype = j->jointype;
3367 reduce_outer_joins_pass1_state *left_state = linitial(state1->sub_states);
3368 reduce_outer_joins_pass1_state *right_state = lsecond(state1->sub_states);
3369
3370 /* Can we simplify this join? */
3371 switch (jointype)
3372 {
3373 case JOIN_INNER:
3374 break;
3375 case JOIN_LEFT:
3376 if (bms_overlap(nonnullable_rels, right_state->relids))
3377 jointype = JOIN_INNER;
3378 break;
3379 case JOIN_RIGHT:
3380 if (bms_overlap(nonnullable_rels, left_state->relids))
3381 jointype = JOIN_INNER;
3382 break;
3383 case JOIN_FULL:
3384 if (bms_overlap(nonnullable_rels, left_state->relids))
3385 {
3386 if (bms_overlap(nonnullable_rels, right_state->relids))
3387 jointype = JOIN_INNER;
3388 else
3389 {
3390 jointype = JOIN_LEFT;
3391 /* Also report partial reduction in state2 */
3392 report_reduced_full_join(state2, rtindex,
3393 right_state->relids);
3394 }
3395 }
3396 else
3397 {
3398 if (bms_overlap(nonnullable_rels, right_state->relids))
3399 {
3400 jointype = JOIN_RIGHT;
3401 /* Also report partial reduction in state2 */
3402 report_reduced_full_join(state2, rtindex,
3403 left_state->relids);
3404 }
3405 }
3406 break;
3407 case JOIN_SEMI:
3408 case JOIN_ANTI:
3409
3410 /*
3411 * These could only have been introduced by pull_up_sublinks,
3412 * so there's no way that upper quals could refer to their
3413 * righthand sides, and no point in checking. We don't expect
3414 * to see JOIN_RIGHT_SEMI or JOIN_RIGHT_ANTI yet.
3415 */
3416 break;
3417 default:
3418 elog(ERROR, "unrecognized join type: %d",
3419 (int) jointype);
3420 break;
3421 }
3422
3423 /*
3424 * Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we
3425 * reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no
3426 * longer matches the internal ordering of any CoalesceExpr's built to
3427 * represent merged join variables. We don't care about that at
3428 * present, but be wary of it ...
3429 */
3430 if (jointype == JOIN_RIGHT)
3431 {
3432 Node *tmparg;
3433
3434 tmparg = j->larg;
3435 j->larg = j->rarg;
3436 j->rarg = tmparg;
3437 jointype = JOIN_LEFT;
3438 right_state = linitial(state1->sub_states);
3439 left_state = lsecond(state1->sub_states);
3440 }
3441
3442 /*
3443 * See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if
3444 * the join's own quals are strict for any var that was forced null by
3445 * higher qual levels. NOTE: there are other ways that we could
3446 * detect an anti-join, in particular if we were to check whether Vars
3447 * coming from the RHS must be non-null because of table constraints.
3448 * That seems complicated and expensive though (in particular, one
3449 * would have to be wary of lower outer joins). For the moment this
3450 * seems sufficient.
3451 */
3452 if (jointype == JOIN_LEFT)
3453 {
3454 List *nonnullable_vars;
3455 Bitmapset *overlap;
3456
3457 /* Find Vars in j->quals that must be non-null in joined rows */
3458 nonnullable_vars = find_nonnullable_vars(j->quals);
3459
3460 /*
3461 * It's not sufficient to check whether nonnullable_vars and
3462 * forced_null_vars overlap: we need to know if the overlap
3463 * includes any RHS variables.
3464 */
3465 overlap = mbms_overlap_sets(nonnullable_vars, forced_null_vars);
3466 if (bms_overlap(overlap, right_state->relids))
3467 jointype = JOIN_ANTI;
3468 }
3469
3470 /*
3471 * Apply the jointype change, if any, to both jointree node and RTE.
3472 * Also, if we changed an RTE to INNER, add its RTI to inner_reduced.
3473 */
3474 if (rtindex && jointype != j->jointype)
3475 {
3476 RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable);
3477
3478 Assert(rte->rtekind == RTE_JOIN);
3479 Assert(rte->jointype == j->jointype);
3480 rte->jointype = jointype;
3481 if (jointype == JOIN_INNER)
3482 state2->inner_reduced = bms_add_member(state2->inner_reduced,
3483 rtindex);
3484 }
3485 j->jointype = jointype;
3486
3487 /* Only recurse if there's more to do below here */
3488 if (left_state->contains_outer || right_state->contains_outer)
3489 {
3490 Relids local_nonnullable_rels;
3491 List *local_forced_null_vars;
3492 Relids pass_nonnullable_rels;
3493 List *pass_forced_null_vars;
3494
3495 /*
3496 * If this join is (now) inner, we can add any constraints its
3497 * quals provide to those we got from above. But if it is outer,
3498 * we can pass down the local constraints only into the nullable
3499 * side, because an outer join never eliminates any rows from its
3500 * non-nullable side. Also, there is no point in passing upper
3501 * constraints into the nullable side, since if there were any
3502 * we'd have been able to reduce the join. (In the case of upper
3503 * forced-null constraints, we *must not* pass them into the
3504 * nullable side --- they either applied here, or not.) The upshot
3505 * is that we pass either the local or the upper constraints,
3506 * never both, to the children of an outer join.
3507 *
3508 * Note that a SEMI join works like an inner join here: it's okay
3509 * to pass down both local and upper constraints. (There can't be
3510 * any upper constraints affecting its inner side, but it's not
3511 * worth having a separate code path to avoid passing them.)
3512 *
3513 * At a FULL join we just punt and pass nothing down --- is it
3514 * possible to be smarter?
3515 */
3516 if (jointype != JOIN_FULL)
3517 {
3518 local_nonnullable_rels = find_nonnullable_rels(j->quals);
3519 local_forced_null_vars = find_forced_null_vars(j->quals);
3520 if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
3521 {
3522 /* OK to merge upper and local constraints */
3523 local_nonnullable_rels = bms_add_members(local_nonnullable_rels,
3524 nonnullable_rels);
3525 local_forced_null_vars = mbms_add_members(local_forced_null_vars,
3526 forced_null_vars);
3527 }
3528 }
3529 else
3530 {
3531 /* no use in calculating these */
3532 local_nonnullable_rels = NULL;
3533 local_forced_null_vars = NIL;
3534 }
3535
3536 if (left_state->contains_outer)
3537 {
3538 if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
3539 {
3540 /* pass union of local and upper constraints */
3541 pass_nonnullable_rels = local_nonnullable_rels;
3542 pass_forced_null_vars = local_forced_null_vars;
3543 }
3544 else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */
3545 {
3546 /* can't pass local constraints to non-nullable side */
3547 pass_nonnullable_rels = nonnullable_rels;
3548 pass_forced_null_vars = forced_null_vars;
3549 }
3550 else
3551 {
3552 /* no constraints pass through JOIN_FULL */
3553 pass_nonnullable_rels = NULL;
3554 pass_forced_null_vars = NIL;
3555 }
3556 reduce_outer_joins_pass2(j->larg, left_state,
3557 state2, root,
3558 pass_nonnullable_rels,
3559 pass_forced_null_vars);
3560 }
3561
3562 if (right_state->contains_outer)
3563 {
3564 if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */
3565 {
3566 /* pass appropriate constraints, per comment above */
3567 pass_nonnullable_rels = local_nonnullable_rels;
3568 pass_forced_null_vars = local_forced_null_vars;
3569 }
3570 else
3571 {
3572 /* no constraints pass through JOIN_FULL */
3573 pass_nonnullable_rels = NULL;
3574 pass_forced_null_vars = NIL;
3575 }
3576 reduce_outer_joins_pass2(j->rarg, right_state,
3577 state2, root,
3578 pass_nonnullable_rels,
3579 pass_forced_null_vars);
3580 }
3581 bms_free(local_nonnullable_rels);
3582 }
3583 }
3584 else
3585 elog(ERROR, "unrecognized node type: %d",
3586 (int) nodeTag(jtnode));
3587}
3588
3589/* Helper for reduce_outer_joins_pass2 */
3590static void
3592 int rtindex, Relids relids)
3593{
3595
3596 statep = palloc(sizeof(reduce_outer_joins_partial_state));
3597 statep->full_join_rti = rtindex;
3598 statep->unreduced_side = relids;
3599 state2->partial_reduced = lappend(state2->partial_reduced, statep);
3600}
3601
3602
3603/*
3604 * remove_useless_result_rtes
3605 * Attempt to remove RTE_RESULT RTEs from the join tree.
3606 * Also, elide single-child FromExprs where possible.
3607 *
3608 * We can remove RTE_RESULT entries from the join tree using the knowledge
3609 * that RTE_RESULT returns exactly one row and has no output columns. Hence,
3610 * if one is inner-joined to anything else, we can delete it. Optimizations
3611 * are also possible for some outer-join cases, as detailed below.
3612 *
3613 * This pass also replaces single-child FromExprs with their child node
3614 * where possible. It's appropriate to do that here and not earlier because
3615 * RTE_RESULT removal might reduce a multiple-child FromExpr to have only one
3616 * child. We can remove such a FromExpr if its quals are empty, or if it's
3617 * semantically valid to merge the quals into those of the parent node.
3618 * While removing unnecessary join tree nodes has some micro-efficiency value,
3619 * the real reason to do this is to eliminate cases where the nullable side of
3620 * an outer join node is a FromExpr whose single child is another outer join.
3621 * To correctly determine whether the two outer joins can commute,
3622 * deconstruct_jointree() must treat any quals of such a FromExpr as being
3623 * degenerate quals of the upper outer join. The best way to do that is to
3624 * make them actually *be* quals of the upper join, by dropping the FromExpr
3625 * and hoisting the quals up into the upper join's quals. (Note that there is
3626 * no hazard when the intermediate FromExpr has multiple children, since then
3627 * it represents an inner join that cannot commute with the upper outer join.)
3628 * As long as we have to do that, we might as well elide such FromExprs
3629 * everywhere.
3630 *
3631 * Some of these optimizations depend on recognizing empty (constant-true)
3632 * quals for FromExprs and JoinExprs. That makes it useful to apply this
3633 * optimization pass after expression preprocessing, since that will have
3634 * eliminated constant-true quals, allowing more cases to be recognized as
3635 * optimizable. What's more, the usual reason for an RTE_RESULT to be present
3636 * is that we pulled up a subquery or VALUES clause, thus very possibly
3637 * replacing Vars with constants, making it more likely that a qual can be
3638 * reduced to constant true. Also, because some optimizations depend on
3639 * the outer-join type, it's best to have done reduce_outer_joins() first.
3640 *
3641 * A PlaceHolderVar referencing an RTE_RESULT RTE poses an obstacle to this
3642 * process: we must remove the RTE_RESULT's relid from the PHV's phrels, but
3643 * we must not reduce the phrels set to empty. If that would happen, and
3644 * the RTE_RESULT is an immediate child of an outer join, we have to give up
3645 * and not remove the RTE_RESULT: there is noplace else to evaluate the
3646 * PlaceHolderVar. (That is, in such cases the RTE_RESULT *does* have output
3647 * columns.) But if the RTE_RESULT is an immediate child of an inner join,
3648 * we can usually change the PlaceHolderVar's phrels so as to evaluate it at
3649 * the inner join instead. This is OK because we really only care that PHVs
3650 * are evaluated above or below the correct outer joins. We can't, however,
3651 * postpone the evaluation of a PHV to above where it is used; so there are
3652 * some checks below on whether output PHVs are laterally referenced in the
3653 * other join input rel(s).
3654 *
3655 * We used to try to do this work as part of pull_up_subqueries() where the
3656 * potentially-optimizable cases get introduced; but it's way simpler, and
3657 * more effective, to do it separately.
3658 */
3659void
3661{
3662 Relids dropped_outer_joins = NULL;
3663 ListCell *cell;
3664
3665 /* Top level of jointree must always be a FromExpr */
3666 Assert(IsA(root->parse->jointree, FromExpr));
3667 /* Recurse ... */
3668 root->parse->jointree = (FromExpr *)
3670 (Node *) root->parse->jointree,
3671 NULL,
3672 &dropped_outer_joins);
3673 /* We should still have a FromExpr */
3674 Assert(IsA(root->parse->jointree, FromExpr));
3675
3676 /*
3677 * If we removed any outer-join nodes from the jointree, run around and
3678 * remove references to those joins as nulling rels. (There could be such
3679 * references in PHVs that we pulled up out of the original subquery that
3680 * the RESULT rel replaced. This is kosher on the grounds that we now
3681 * know that such an outer join wouldn't really have nulled anything.) We
3682 * don't do this during the main recursion, for simplicity and because we
3683 * can handle all such joins in a single pass over the parse tree.
3684 */
3685 if (!bms_is_empty(dropped_outer_joins))
3686 {
3687 root->parse = (Query *)
3688 remove_nulling_relids((Node *) root->parse,
3689 dropped_outer_joins,
3690 NULL);
3691 /* There could be references in the append_rel_list, too */
3692 root->append_rel_list = (List *)
3693 remove_nulling_relids((Node *) root->append_rel_list,
3694 dropped_outer_joins,
3695 NULL);
3696 }
3697
3698 /*
3699 * Remove any PlanRowMark referencing an RTE_RESULT RTE. We obviously
3700 * must do that for any RTE_RESULT that we just removed. But one for a
3701 * RTE that we did not remove can be dropped anyway: since the RTE has
3702 * only one possible output row, there is no need for EPQ to mark and
3703 * restore that row.
3704 *
3705 * It's necessary, not optional, to remove the PlanRowMark for a surviving
3706 * RTE_RESULT RTE; otherwise we'll generate a whole-row Var for the
3707 * RTE_RESULT, which the executor has no support for.
3708 */
3709 foreach(cell, root->rowMarks)
3710 {
3711 PlanRowMark *rc = (PlanRowMark *) lfirst(cell);
3712
3713 if (rt_fetch(rc->rti, root->parse->rtable)->rtekind == RTE_RESULT)
3714 root->rowMarks = foreach_delete_current(root->rowMarks, cell);
3715 }
3716}
3717
3718/*
3719 * remove_useless_results_recurse
3720 * Recursive guts of remove_useless_result_rtes.
3721 *
3722 * This recursively processes the jointree and returns a modified jointree.
3723 * In addition, the RT indexes of any removed outer-join nodes are added to
3724 * *dropped_outer_joins.
3725 *
3726 * jtnode is the current jointree node. If it could be valid to merge
3727 * its quals into those of the parent node, parent_quals should point to
3728 * the parent's quals list; otherwise, pass NULL for parent_quals.
3729 * (Note that in some cases, parent_quals points to the quals of a parent
3730 * more than one level up in the tree.)
3731 */
3732static Node *
3734 Node **parent_quals,
3735 Relids *dropped_outer_joins)
3736{
3737 Assert(jtnode != NULL);
3738 if (IsA(jtnode, RangeTblRef))
3739 {
3740 /* Can't immediately do anything with a RangeTblRef */
3741 }
3742 else if (IsA(jtnode, FromExpr))
3743 {
3744 FromExpr *f = (FromExpr *) jtnode;
3745 Relids result_relids = NULL;
3746 ListCell *cell;
3747
3748 /*
3749 * We can drop RTE_RESULT rels from the fromlist so long as at least
3750 * one child remains, since joining to a one-row table changes
3751 * nothing. (But we can't drop a RTE_RESULT that computes PHV(s) that
3752 * are needed by some sibling. The cleanup transformation below would
3753 * reassign the PHVs to be computed at the join, which is too late for
3754 * the sibling's use.) The easiest way to mechanize this rule is to
3755 * modify the list in-place.
3756 */
3757 foreach(cell, f->fromlist)
3758 {
3759 Node *child = (Node *) lfirst(cell);
3760 int varno;
3761
3762 /* Recursively transform child, allowing it to push up quals ... */
3763 child = remove_useless_results_recurse(root, child,
3764 &f->quals,
3765 dropped_outer_joins);
3766 /* ... and stick it back into the tree */
3767 lfirst(cell) = child;
3768
3769 /*
3770 * If it's an RTE_RESULT with at least one sibling, and no sibling
3771 * references dependent PHVs, we can drop it. We don't yet know
3772 * what the inner join's final relid set will be, so postpone
3773 * cleanup of PHVs etc till after this loop.
3774 */
3775 if (list_length(f->fromlist) > 1 &&
3776 (varno = get_result_relid(root, child)) != 0 &&
3778 {
3779 f->fromlist = foreach_delete_current(f->fromlist, cell);
3780 result_relids = bms_add_member(result_relids, varno);
3781 }
3782 }
3783
3784 /*
3785 * Clean up if we dropped any RTE_RESULT RTEs. This is a bit
3786 * inefficient if there's more than one, but it seems better to
3787 * optimize the support code for the single-relid case.
3788 */
3789 if (result_relids)
3790 {
3791 int varno = -1;
3792
3793 while ((varno = bms_next_member(result_relids, varno)) >= 0)
3794 remove_result_refs(root, varno, (Node *) f);
3795 }
3796
3797 /*
3798 * If the FromExpr now has only one child, see if we can elide it.
3799 * This is always valid if there are no quals, except at the top of
3800 * the jointree (since Query.jointree is required to point to a
3801 * FromExpr). Otherwise, we can do it if we can push the quals up to
3802 * the parent node.
3803 *
3804 * Note: while it would not be terribly hard to generalize this
3805 * transformation to merge multi-child FromExprs into their parent
3806 * FromExpr, that risks making the parent join too expensive to plan.
3807 * We leave it to later processing to decide heuristically whether
3808 * that's a good idea. Pulling up a single child is always OK,
3809 * however.
3810 */
3811 if (list_length(f->fromlist) == 1 &&
3812 f != root->parse->jointree &&
3813 (f->quals == NULL || parent_quals != NULL))
3814 {
3815 /*
3816 * Merge any quals up to parent. They should be in implicit-AND
3817 * format by now, so we just need to concatenate lists. Put the
3818 * child quals at the front, on the grounds that they should
3819 * nominally be evaluated earlier.
3820 */
3821 if (f->quals != NULL)
3822 *parent_quals = (Node *)
3824 castNode(List, *parent_quals));
3825 return (Node *) linitial(f->fromlist);
3826 }
3827 }
3828 else if (IsA(jtnode, JoinExpr))
3829 {
3830 JoinExpr *j = (JoinExpr *) jtnode;
3831 int varno;
3832
3833 /*
3834 * First, recurse. We can absorb pushed-up FromExpr quals from either
3835 * child into this node if the jointype is INNER, since then this is
3836 * equivalent to a FromExpr. When the jointype is LEFT, we can absorb
3837 * quals from the RHS child into the current node, as they're
3838 * essentially degenerate quals of the outer join. Moreover, if we've
3839 * been passed down a parent_quals pointer then we can allow quals of
3840 * the LHS child to be absorbed into the parent. (This is important
3841 * to ensure we remove single-child FromExprs immediately below
3842 * commutable left joins.) For other jointypes, we can't move child
3843 * quals up, or at least there's no particular reason to.
3844 */
3845 j->larg = remove_useless_results_recurse(root, j->larg,
3846 (j->jointype == JOIN_INNER) ?
3847 &j->quals :
3848 (j->jointype == JOIN_LEFT) ?
3849 parent_quals : NULL,
3850 dropped_outer_joins);
3851 j->rarg = remove_useless_results_recurse(root, j->rarg,
3852 (j->jointype == JOIN_INNER ||
3853 j->jointype == JOIN_LEFT) ?
3854 &j->quals : NULL,
3855 dropped_outer_joins);
3856
3857 /* Apply join-type-specific optimization rules */
3858 switch (j->jointype)
3859 {
3860 case JOIN_INNER:
3861
3862 /*
3863 * An inner join is equivalent to a FromExpr, so if either
3864 * side was simplified to an RTE_RESULT rel, we can replace
3865 * the join with a FromExpr with just the other side.
3866 * Furthermore, we can elide that FromExpr according to the
3867 * same rules as above.
3868 *
3869 * Just as in the FromExpr case, we can't simplify if the
3870 * other input rel references any PHVs that are marked as to
3871 * be evaluated at the RTE_RESULT rel, because we can't
3872 * postpone their evaluation in that case. But we only have
3873 * to check this in cases where it's syntactically legal for
3874 * the other input to have a LATERAL reference to the
3875 * RTE_RESULT rel. Only RHSes of inner and left joins are
3876 * allowed to have such refs.
3877 */
3878 if ((varno = get_result_relid(root, j->larg)) != 0 &&
3879 !find_dependent_phvs_in_jointree(root, j->rarg, varno))
3880 {
3881 remove_result_refs(root, varno, j->rarg);
3882 if (j->quals != NULL && parent_quals == NULL)
3883 jtnode = (Node *)
3884 makeFromExpr(list_make1(j->rarg), j->quals);
3885 else
3886 {
3887 /* Merge any quals up to parent */
3888 if (j->quals != NULL)
3889 *parent_quals = (Node *)
3890 list_concat(castNode(List, j->quals),
3891 castNode(List, *parent_quals));
3892 jtnode = j->rarg;
3893 }
3894 }
3895 else if ((varno = get_result_relid(root, j->rarg)) != 0)
3896 {
3897 remove_result_refs(root, varno, j->larg);
3898 if (j->quals != NULL && parent_quals == NULL)
3899 jtnode = (Node *)
3900 makeFromExpr(list_make1(j->larg), j->quals);
3901 else
3902 {
3903 /* Merge any quals up to parent */
3904 if (j->quals != NULL)
3905 *parent_quals = (Node *)
3906 list_concat(castNode(List, j->quals),
3907 castNode(List, *parent_quals));
3908 jtnode = j->larg;
3909 }
3910 }
3911 break;
3912 case JOIN_LEFT:
3913
3914 /*
3915 * We can simplify this case if the RHS is an RTE_RESULT, with
3916 * two different possibilities:
3917 *
3918 * If the qual is empty (JOIN ON TRUE), then the join can be
3919 * strength-reduced to a plain inner join, since each LHS row
3920 * necessarily has exactly one join partner. So we can always
3921 * discard the RHS, much as in the JOIN_INNER case above.
3922 * (Again, the LHS could not contain a lateral reference to
3923 * the RHS.)
3924 *
3925 * Otherwise, it's still true that each LHS row should be
3926 * returned exactly once, and since the RHS returns no columns
3927 * (unless there are PHVs that have to be evaluated there), we
3928 * don't much care if it's null-extended or not. So in this
3929 * case also, we can just ignore the qual and discard the left
3930 * join.
3931 */
3932 if ((varno = get_result_relid(root, j->rarg)) != 0 &&
3933 (j->quals == NULL ||
3934 !find_dependent_phvs(root, varno)))
3935 {
3936 remove_result_refs(root, varno, j->larg);
3937 *dropped_outer_joins = bms_add_member(*dropped_outer_joins,
3938 j->rtindex);
3939 jtnode = j->larg;
3940 }
3941 break;
3942 case JOIN_SEMI:
3943
3944 /*
3945 * We may simplify this case if the RHS is an RTE_RESULT; the
3946 * join qual becomes effectively just a filter qual for the
3947 * LHS, since we should either return the LHS row or not. The
3948 * filter clause must go into a new FromExpr if we can't push
3949 * it up to the parent.
3950 *
3951 * There is a fine point about PHVs that are supposed to be
3952 * evaluated at the RHS. Such PHVs could only appear in the
3953 * semijoin's qual, since the rest of the query cannot
3954 * reference any outputs of the semijoin's RHS. Therefore,
3955 * they can't actually go to null before being examined, and
3956 * it'd be OK to just remove the PHV wrapping. We don't have
3957 * infrastructure for that, but remove_result_refs() will
3958 * relabel them as to be evaluated at the LHS, which is fine.
3959 *
3960 * Also, we don't need to worry about removing traces of the
3961 * join's rtindex, since it hasn't got one.
3962 */
3963 if ((varno = get_result_relid(root, j->rarg)) != 0)
3964 {
3965 Assert(j->rtindex == 0);
3966 remove_result_refs(root, varno, j->larg);
3967 if (j->quals != NULL && parent_quals == NULL)
3968 jtnode = (Node *)
3969 makeFromExpr(list_make1(j->larg), j->quals);
3970 else
3971 {
3972 /* Merge any quals up to parent */
3973 if (j->quals != NULL)
3974 *parent_quals = (Node *)
3975 list_concat(castNode(List, j->quals),
3976 castNode(List, *parent_quals));
3977 jtnode = j->larg;
3978 }
3979 }
3980 break;
3981 case JOIN_FULL:
3982 case JOIN_ANTI:
3983 /* We have no special smarts for these cases */
3984 break;
3985 default:
3986 /* Note: JOIN_RIGHT should be gone at this point */
3987 elog(ERROR, "unrecognized join type: %d",
3988 (int) j->jointype);
3989 break;
3990 }
3991 }
3992 else
3993 elog(ERROR, "unrecognized node type: %d",
3994 (int) nodeTag(jtnode));
3995 return jtnode;
3996}
3997
3998/*
3999 * get_result_relid
4000 * If jtnode is a RangeTblRef for an RTE_RESULT RTE, return its relid;
4001 * otherwise return 0.
4002 */
4003static int
4005{
4006 int varno;
4007
4008 if (!IsA(jtnode, RangeTblRef))
4009 return 0;
4010 varno = ((RangeTblRef *) jtnode)->rtindex;
4011 if (rt_fetch(varno, root->parse->rtable)->rtekind != RTE_RESULT)
4012 return 0;
4013 return varno;
4014}
4015
4016/*
4017 * remove_result_refs
4018 * Helper routine for dropping an unneeded RTE_RESULT RTE.
4019 *
4020 * This doesn't physically remove the RTE from the jointree, because that's
4021 * more easily handled in remove_useless_results_recurse. What it does do
4022 * is the necessary cleanup in the rest of the tree: we must adjust any PHVs
4023 * that may reference the RTE. Be sure to call this at a point where the
4024 * jointree is valid (no disconnected nodes).
4025 *
4026 * Note that we don't need to process the append_rel_list, since RTEs
4027 * referenced directly in the jointree won't be appendrel members.
4028 *
4029 * varno is the RTE_RESULT's relid.
4030 * newjtloc is the jointree location at which any PHVs referencing the
4031 * RTE_RESULT should be evaluated instead.
4032 */
4033static void
4035{
4036 /* Fix up PlaceHolderVars as needed */
4037 /* If there are no PHVs anywhere, we can skip this bit */
4038 if (root->glob->lastPHId != 0)
4039 {
4040 Relids subrelids;
4041
4042 subrelids = get_relids_in_jointree(newjtloc, true, false);
4043 Assert(!bms_is_empty(subrelids));
4044 substitute_phv_relids((Node *) root->parse, varno, subrelids);
4045 fix_append_rel_relids(root, varno, subrelids);
4046 }
4047
4048 /*
4049 * We also need to remove any PlanRowMark referencing the RTE, but we
4050 * postpone that work until we return to remove_useless_result_rtes.
4051 */
4052}
4053
4054
4055/*
4056 * find_dependent_phvs - are there any PlaceHolderVars whose relids are
4057 * exactly the given varno?
4058 *
4059 * find_dependent_phvs should be used when we want to see if there are
4060 * any such PHVs anywhere in the Query. Another use-case is to see if
4061 * a subtree of the join tree contains such PHVs; but for that, we have
4062 * to look not only at the join tree nodes themselves but at the
4063 * referenced RTEs. For that, use find_dependent_phvs_in_jointree.
4064 */
4065
4066typedef struct
4067{
4071
4072static bool
4075{
4076 if (node == NULL)
4077 return false;
4078 if (IsA(node, PlaceHolderVar))
4079 {
4080 PlaceHolderVar *phv = (PlaceHolderVar *) node;
4081
4082 if (phv->phlevelsup == context->sublevels_up &&
4083 bms_equal(context->relids, phv->phrels))
4084 return true;
4085 /* fall through to examine children */
4086 }
4087 if (IsA(node, Query))
4088 {
4089 /* Recurse into subselects */
4090 bool result;
4091
4092 context->sublevels_up++;
4093 result = query_tree_walker((Query *) node,
4095 context, 0);
4096 context->sublevels_up--;
4097 return result;
4098 }
4099 /* Shouldn't need to handle most planner auxiliary nodes here */
4100 Assert(!IsA(node, SpecialJoinInfo));
4101 Assert(!IsA(node, PlaceHolderInfo));
4102 Assert(!IsA(node, MinMaxAggInfo));
4103
4105}
4106
4107static bool
4109{
4111
4112 /* If there are no PHVs anywhere, we needn't work hard */
4113 if (root->glob->lastPHId == 0)
4114 return false;
4115
4116 context.relids = bms_make_singleton(varno);
4117 context.sublevels_up = 0;
4118
4119 if (query_tree_walker(root->parse, find_dependent_phvs_walker, &context, 0))
4120 return true;
4121 /* The append_rel_list could be populated already, so check it too */
4122 if (expression_tree_walker((Node *) root->append_rel_list,
4124 &context))
4125 return true;
4126 return false;
4127}
4128
4129static bool
4131{
4133 Relids subrelids;
4134 int relid;
4135
4136 /* If there are no PHVs anywhere, we needn't work hard */
4137 if (root->glob->lastPHId == 0)
4138 return false;
4139
4140 context.relids = bms_make_singleton(varno);
4141 context.sublevels_up = 0;
4142
4143 /*
4144 * See if the jointree fragment itself contains references (in join quals)
4145 */
4146 if (find_dependent_phvs_walker(node, &context))
4147 return true;
4148
4149 /*
4150 * Otherwise, identify the set of referenced RTEs (we can ignore joins,
4151 * since they should be flattened already, so their join alias lists no
4152 * longer matter), and tediously check each RTE. We can ignore RTEs that
4153 * are not marked LATERAL, though, since they couldn't possibly contain
4154 * any cross-references to other RTEs.
4155 */
4156 subrelids = get_relids_in_jointree(node, false, false);
4157 relid = -1;
4158 while ((relid = bms_next_member(subrelids, relid)) >= 0)
4159 {
4160 RangeTblEntry *rte = rt_fetch(relid, root->parse->rtable);
4161
4162 if (rte->lateral &&
4164 return true;
4165 }
4166
4167 return false;
4168}
4169
4170/*
4171 * substitute_phv_relids - adjust PlaceHolderVar relid sets after pulling up
4172 * a subquery or removing an RTE_RESULT jointree item
4173 *
4174 * Find any PlaceHolderVar nodes in the given tree that reference the
4175 * pulled-up relid, and change them to reference the replacement relid(s).
4176 *
4177 * NOTE: although this has the form of a walker, we cheat and modify the
4178 * nodes in-place. This should be OK since the tree was copied by
4179 * pullup_replace_vars earlier. Avoid scribbling on the original values of
4180 * the bitmapsets, though, because expression_tree_mutator doesn't copy those.
4181 */
4182
4183typedef struct
4184{
4189
4190static bool
4193{
4194 if (node == NULL)
4195 return false;
4196 if (IsA(node, PlaceHolderVar))
4197 {
4198 PlaceHolderVar *phv = (PlaceHolderVar *) node;
4199
4200 if (phv->phlevelsup == context->sublevels_up &&
4201 bms_is_member(context->varno, phv->phrels))
4202 {
4203 phv->phrels = bms_union(phv->phrels,
4204 context->subrelids);
4205 phv->phrels = bms_del_member(phv->phrels,
4206 context->varno);
4207 /* Assert we haven't broken the PHV */
4208 Assert(!bms_is_empty(phv->phrels));
4209 }
4210 /* fall through to examine children */
4211 }
4212 if (IsA(node, Query))
4213 {
4214 /* Recurse into subselects */
4215 bool result;
4216
4217 context->sublevels_up++;
4218 result = query_tree_walker((Query *) node,
4220 context, 0);
4221 context->sublevels_up--;
4222 return result;
4223 }
4224 /* Shouldn't need to handle planner auxiliary nodes here */
4225 Assert(!IsA(node, SpecialJoinInfo));
4226 Assert(!IsA(node, AppendRelInfo));
4227 Assert(!IsA(node, PlaceHolderInfo));
4228 Assert(!IsA(node, MinMaxAggInfo));
4229
4231}
4232
4233static void
4234substitute_phv_relids(Node *node, int varno, Relids subrelids)
4235{
4237
4238 context.varno = varno;
4239 context.sublevels_up = 0;
4240 context.subrelids = subrelids;
4241
4242 /*
4243 * Must be prepared to start with a Query or a bare expression tree.
4244 */
4247 &context,
4248 0);
4249}
4250
4251/*
4252 * fix_append_rel_relids: update RT-index fields of AppendRelInfo nodes
4253 *
4254 * When we pull up a subquery, any AppendRelInfo references to the subquery's
4255 * RT index have to be replaced by the substituted relid (and there had better
4256 * be only one). We also need to apply substitute_phv_relids to their
4257 * translated_vars lists, since those might contain PlaceHolderVars.
4258 *
4259 * We assume we may modify the AppendRelInfo nodes in-place.
4260 */
4261static void
4263{
4264 ListCell *l;
4265 int subvarno = -1;
4266
4267 /*
4268 * We only want to extract the member relid once, but we mustn't fail
4269 * immediately if there are multiple members; it could be that none of the
4270 * AppendRelInfo nodes refer to it. So compute it on first use. Note that
4271 * bms_singleton_member will complain if set is not singleton.
4272 */
4273 foreach(l, root->append_rel_list)
4274 {
4275 AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
4276
4277 /* The parent_relid shouldn't ever be a pullup target */
4278 Assert(appinfo->parent_relid != varno);
4279
4280 if (appinfo->child_relid == varno)
4281 {
4282 if (subvarno < 0)
4283 subvarno = bms_singleton_member(subrelids);
4284 appinfo->child_relid = subvarno;
4285 }
4286
4287 /* Also fix up any PHVs in its translated vars */
4288 if (root->glob->lastPHId != 0)
4290 varno, subrelids);
4291 }
4292}
4293
4294/*
4295 * get_relids_in_jointree: get set of RT indexes present in a jointree
4296 *
4297 * Base-relation relids are always included in the result.
4298 * If include_outer_joins is true, outer-join RT indexes are included.
4299 * If include_inner_joins is true, inner-join RT indexes are included.
4300 *
4301 * Note that for most purposes in the planner, outer joins are included
4302 * in standard relid sets. Setting include_inner_joins true is only
4303 * appropriate for special purposes during subquery flattening.
4304 */
4305Relids
4306get_relids_in_jointree(Node *jtnode, bool include_outer_joins,
4307 bool include_inner_joins)
4308{
4309 Relids result = NULL;
4310
4311 if (jtnode == NULL)
4312 return result;
4313 if (IsA(jtnode, RangeTblRef))
4314 {
4315 int varno = ((RangeTblRef *) jtnode)->rtindex;
4316
4317 result = bms_make_singleton(varno);
4318 }
4319 else if (IsA(jtnode, FromExpr))
4320 {
4321 FromExpr *f = (FromExpr *) jtnode;
4322 ListCell *l;
4323
4324 foreach(l, f->fromlist)
4325 {
4326 result = bms_join(result,
4328 include_outer_joins,
4329 include_inner_joins));
4330 }
4331 }
4332 else if (IsA(jtnode, JoinExpr))
4333 {
4334 JoinExpr *j = (JoinExpr *) jtnode;
4335
4336 result = get_relids_in_jointree(j->larg,
4337 include_outer_joins,
4338 include_inner_joins);
4339 result = bms_join(result,
4341 include_outer_joins,
4342 include_inner_joins));
4343 if (j->rtindex)
4344 {
4345 if (j->jointype == JOIN_INNER)
4346 {
4347 if (include_inner_joins)
4348 result = bms_add_member(result, j->rtindex);
4349 }
4350 else
4351 {
4352 if (include_outer_joins)
4353 result = bms_add_member(result, j->rtindex);
4354 }
4355 }
4356 }
4357 else
4358 elog(ERROR, "unrecognized node type: %d",
4359 (int) nodeTag(jtnode));
4360 return result;
4361}
4362
4363/*
4364 * get_relids_for_join: get set of base+OJ RT indexes making up a join
4365 */
4366Relids
4367get_relids_for_join(Query *query, int joinrelid)
4368{
4369 Node *jtnode;
4370
4371 jtnode = find_jointree_node_for_rel((Node *) query->jointree,
4372 joinrelid);
4373 if (!jtnode)
4374 elog(ERROR, "could not find join node %d", joinrelid);
4375 return get_relids_in_jointree(jtnode, true, false);
4376}
4377
4378/*
4379 * find_jointree_node_for_rel: locate jointree node for a base or join RT index
4380 *
4381 * Returns NULL if not found
4382 */
4383static Node *
4385{
4386 if (jtnode == NULL)
4387 return NULL;
4388 if (IsA(jtnode, RangeTblRef))
4389 {
4390 int varno = ((RangeTblRef *) jtnode)->rtindex;
4391
4392 if (relid == varno)
4393 return jtnode;
4394 }
4395 else if (IsA(jtnode, FromExpr))
4396 {
4397 FromExpr *f = (FromExpr *) jtnode;
4398 ListCell *l;
4399
4400 foreach(l, f->fromlist)
4401 {
4402 jtnode = find_jointree_node_for_rel(lfirst(l), relid);
4403 if (jtnode)
4404 return jtnode;
4405 }
4406 }
4407 else if (IsA(jtnode, JoinExpr))
4408 {
4409 JoinExpr *j = (JoinExpr *) jtnode;
4410
4411 if (relid == j->rtindex)
4412 return jtnode;
4413 jtnode = find_jointree_node_for_rel(j->larg, relid);
4414 if (jtnode)
4415 return jtnode;
4416 jtnode = find_jointree_node_for_rel(j->rarg, relid);
4417 if (jtnode)
4418 return jtnode;
4419 }
4420 else
4421 elog(ERROR, "unrecognized node type: %d",
4422 (int) nodeTag(jtnode));
4423 return NULL;
4424}
4425
4426/*
4427 * get_nullingrels: collect info about which outer joins null which relations
4428 *
4429 * The result struct contains, for each leaf relation used in the query,
4430 * the set of relids of outer joins that potentially null that rel.
4431 */
4432static nullingrel_info *
4434{
4436
4437 result->rtlength = list_length(parse->rtable);
4438 result->nullingrels = palloc0_array(Relids, result->rtlength + 1);
4439 get_nullingrels_recurse((Node *) parse->jointree, NULL, result);
4440 return result;
4441}
4442
4443/*
4444 * Recursive guts of get_nullingrels().
4445 *
4446 * Note: at any recursion level, the passed-down upper_nullingrels must be
4447 * treated as a constant, but it can be stored directly into *info
4448 * if we're at leaf level. Upper recursion levels do not free their mutated
4449 * copies of the nullingrels, because those are probably referenced by
4450 * at least one leaf rel.
4451 */
4452static void
4453get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels,
4454 nullingrel_info *info)
4455{
4456 if (jtnode == NULL)
4457 return;
4458 if (IsA(jtnode, RangeTblRef))
4459 {
4460 int varno = ((RangeTblRef *) jtnode)->rtindex;
4461
4462 Assert(varno > 0 && varno <= info->rtlength);
4463 info->nullingrels[varno] = upper_nullingrels;
4464 }
4465 else if (IsA(jtnode, FromExpr))
4466 {
4467 FromExpr *f = (FromExpr *) jtnode;
4468 ListCell *l;
4469
4470 foreach(l, f->fromlist)
4471 {
4472 get_nullingrels_recurse(lfirst(l), upper_nullingrels, info);
4473 }
4474 }
4475 else if (IsA(jtnode, JoinExpr))
4476 {
4477 JoinExpr *j = (JoinExpr *) jtnode;
4478 Relids local_nullingrels;
4479
4480 switch (j->jointype)
4481 {
4482 case JOIN_INNER:
4483 get_nullingrels_recurse(j->larg, upper_nullingrels, info);
4484 get_nullingrels_recurse(j->rarg, upper_nullingrels, info);
4485 break;
4486 case JOIN_LEFT:
4487 case JOIN_SEMI:
4488 case JOIN_ANTI:
4489 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4490 j->rtindex);
4491 get_nullingrels_recurse(j->larg, upper_nullingrels, info);
4492 get_nullingrels_recurse(j->rarg, local_nullingrels, info);
4493 break;
4494 case JOIN_FULL:
4495 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4496 j->rtindex);
4497 get_nullingrels_recurse(j->larg, local_nullingrels, info);
4498 get_nullingrels_recurse(j->rarg, local_nullingrels, info);
4499 break;
4500 case JOIN_RIGHT:
4501 local_nullingrels = bms_add_member(bms_copy(upper_nullingrels),
4502 j->rtindex);
4503 get_nullingrels_recurse(j->larg, local_nullingrels, info);
4504 get_nullingrels_recurse(j->rarg, upper_nullingrels, info);
4505 break;
4506 default:
4507 elog(ERROR, "unrecognized join type: %d",
4508 (int) j->jointype);
4509 break;
4510 }
4511 }
4512 else
4513 elog(ERROR, "unrecognized node type: %d",
4514 (int) nodeTag(jtnode));
4515}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
Bitmapset * bms_make_singleton(int x)
Definition: bitmapset.c:216
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
int bms_next_member(const Bitmapset *a, int prevbit)
Definition: bitmapset.c:1305
Bitmapset * bms_del_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:1160
Bitmapset * bms_del_member(Bitmapset *a, int x)
Definition: bitmapset.c:867
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:671
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:814
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:916
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:581
Bitmapset * bms_join(Bitmapset *a, Bitmapset *b)
Definition: bitmapset.c:1229
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
#define bms_is_empty(a)
Definition: bitmapset.h:118
unsigned int Index
Definition: c.h:624
List * find_forced_null_vars(Node *node)
Definition: clauses.c:1931
Query * inline_function_in_from(PlannerInfo *root, RangeTblEntry *rte)
Definition: clauses.c:5249
Node * eval_const_expressions(PlannerInfo *root, Node *node)
Definition: clauses.c:2270
List * find_nonnullable_vars(Node *clause)
Definition: clauses.c:1722
Relids find_nonnullable_rels(Node *clause)
Definition: clauses.c:1471
bool contain_nonstrict_functions(Node *clause)
Definition: clauses.c:1005
bool contain_volatile_functions(Node *clause)
Definition: clauses.c:550
static bool restricted
Definition: command.c:199
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define palloc_object(type)
Definition: fe_memutils.h:74
#define palloc0_array(type, count)
Definition: fe_memutils.h:77
TypeFuncClass get_expr_result_type(Node *expr, Oid *resultTypeId, TupleDesc *resultTupleDesc)
Definition: funcapi.c:299
TypeFuncClass
Definition: funcapi.h:147
@ TYPEFUNC_SCALAR
Definition: funcapi.h:148
Assert(PointerIsAligned(start, uint64))
int j
Definition: isn.c:78
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
List * lappend(List *list, void *datum)
Definition: list.c:339
List * list_concat(List *list1, const List *list2)
Definition: list.c:561
#define NoLock
Definition: lockdefs.h:34
Alias * makeAlias(const char *aliasname, List *colnames)
Definition: makefuncs.c:438
Var * makeVarFromTargetEntry(int varno, TargetEntry *tle)
Definition: makefuncs.c:107
FromExpr * makeFromExpr(List *fromlist, Node *quals)
Definition: makefuncs.c:336
Var * makeVar(int varno, AttrNumber varattno, Oid vartype, int32 vartypmod, Oid varcollid, Index varlevelsup)
Definition: makefuncs.c:66
Var * makeWholeRowVar(RangeTblEntry *rte, int varno, Index varlevelsup, bool allowScalar)
Definition: makefuncs.c:137
Expr * make_andclause(List *andclauses)
Definition: makefuncs.c:727
TargetEntry * makeTargetEntry(Expr *expr, AttrNumber resno, char *resname, bool resjunk)
Definition: makefuncs.c:289
Node * make_and_qual(Node *qual1, Node *qual2)
Definition: makefuncs.c:780
void * palloc0(Size size)
Definition: mcxt.c:1395
void * palloc(Size size)
Definition: mcxt.c:1365
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
#define CHECK_FOR_INTERRUPTS()
Definition: miscadmin.h:123
List * mbms_add_members(List *a, const List *b)
Bitmapset * mbms_overlap_sets(const List *a, const List *b)
bool expression_returns_set(Node *clause)
Definition: nodeFuncs.c:763
static bool is_andclause(const void *clause)
Definition: nodeFuncs.h:107
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define query_or_expression_tree_walker(n, w, c, f)
Definition: nodeFuncs.h:171
#define range_table_entry_walker(r, w, c, f)
Definition: nodeFuncs.h:168
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
static bool is_notclause(const void *clause)
Definition: nodeFuncs.h:125
static Expr * get_notclausearg(const void *notclause)
Definition: nodeFuncs.h:134
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define copyObject(obj)
Definition: nodes.h:232
#define nodeTag(nodeptr)
Definition: nodes.h:139
#define IS_OUTER_JOIN(jointype)
Definition: nodes.h:348
@ CMD_MERGE
Definition: nodes.h:279
@ CMD_SELECT
Definition: nodes.h:275
@ CMD_NOTHING
Definition: nodes.h:282
#define makeNode(_type_)
Definition: nodes.h:161
#define castNode(_type_, nodeptr)
Definition: nodes.h:182
JoinType
Definition: nodes.h:298
@ JOIN_SEMI
Definition: nodes.h:317
@ JOIN_FULL
Definition: nodes.h:305
@ JOIN_INNER
Definition: nodes.h:303
@ JOIN_RIGHT
Definition: nodes.h:306
@ JOIN_LEFT
Definition: nodes.h:304
@ JOIN_ANTI
Definition: nodes.h:318
@ SETOP_UNION
Definition: parsenodes.h:2177
@ RTE_JOIN
Definition: parsenodes.h:1045
@ RTE_CTE
Definition: parsenodes.h:1049
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1050
@ RTE_VALUES
Definition: parsenodes.h:1048
@ RTE_SUBQUERY
Definition: parsenodes.h:1044
@ RTE_RESULT
Definition: parsenodes.h:1051
@ RTE_FUNCTION
Definition: parsenodes.h:1046
@ RTE_TABLEFUNC
Definition: parsenodes.h:1047
@ RTE_GROUP
Definition: parsenodes.h:1054
@ RTE_RELATION
Definition: parsenodes.h:1043
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
FormData_pg_attribute * Form_pg_attribute
Definition: pg_attribute.h:202
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define linitial_node(type, l)
Definition: pg_list.h:181
#define NIL
Definition: pg_list.h:68
#define forboth(cell1, list1, cell2, list2)
Definition: pg_list.h:518
#define foreach_delete_current(lst, var_or_cell)
Definition: pg_list.h:391
#define list_make1(x1)
Definition: pg_list.h:212
#define linitial(l)
Definition: pg_list.h:178
#define lsecond(l)
Definition: pg_list.h:183
#define foreach_node(type, var, lst)
Definition: pg_list.h:496
static rewind_source * source
Definition: pg_rewind.c:89
PlaceHolderVar * make_placeholder_expr(PlannerInfo *root, Expr *expr, Relids phrels)
Definition: placeholder.c:54
void get_relation_notnullatts(PlannerInfo *root, Relation relation)
Definition: plancat.c:682
#define InvalidOid
Definition: postgres_ext.h:37
unsigned int Oid
Definition: postgres_ext.h:32
static Node * pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode, JoinExpr *lowest_outer_join, AppendRelInfo *containing_appendrel)
static nullingrel_info * get_nullingrels(Query *parse)
static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc)
static Node * pull_up_constant_function(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, AppendRelInfo *containing_appendrel)
void preprocess_function_rtes(PlannerInfo *root)
static bool find_dependent_phvs_walker(Node *node, find_dependent_phvs_context *context)
static Node * find_jointree_node_for_rel(Node *jtnode, int relid)
static Node * pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
static void reduce_outer_joins_pass2(Node *jtnode, reduce_outer_joins_pass1_state *state1, reduce_outer_joins_pass2_state *state2, PlannerInfo *root, Relids nonnullable_rels, List *forced_null_vars)
static void pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, int parentRTindex, Query *setOpQuery, int childRToffset)
static bool is_simple_values(PlannerInfo *root, RangeTblEntry *rte)
static void make_setop_translation_list(Query *query, int newvarno, AppendRelInfo *appinfo)
void flatten_simple_union_all(PlannerInfo *root)
void transform_MERGE_to_join(Query *parse)
Definition: prepjointree.c:187
static void report_reduced_full_join(reduce_outer_joins_pass2_state *state2, int rtindex, Relids relids)
static void perform_pullup_replace_vars(PlannerInfo *root, pullup_replace_vars_context *rvcontext, AppendRelInfo *containing_appendrel)
struct nullingrel_info nullingrel_info
void remove_useless_result_rtes(PlannerInfo *root)
static Node * pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode, Relids *relids)
Definition: prepjointree.c:674
static void get_nullingrels_recurse(Node *jtnode, Relids upper_nullingrels, nullingrel_info *info)
ReplaceWrapOption
Definition: prepjointree.c:63
@ REPLACE_WRAP_VARFREE
Definition: prepjointree.c:66
@ REPLACE_WRAP_ALL
Definition: prepjointree.c:65
@ REPLACE_WRAP_NONE
Definition: prepjointree.c:64
static reduce_outer_joins_pass1_state * reduce_outer_joins_pass1(Node *jtnode)
static void replace_vars_in_jointree(Node *jtnode, pullup_replace_vars_context *context)
static bool is_simple_subquery(PlannerInfo *root, Query *subquery, RangeTblEntry *rte, JoinExpr *lowest_outer_join)
static void substitute_phv_relids(Node *node, int varno, Relids subrelids)
void pull_up_sublinks(PlannerInfo *root)
Definition: prepjointree.c:647
static Node * pullup_replace_vars_callback(Var *var, replace_rte_variables_context *context)
static Node * pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte, JoinExpr *lowest_outer_join, AppendRelInfo *containing_appendrel)
void replace_empty_jointree(Query *parse)
Definition: prepjointree.c:589
static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
static bool substitute_phv_relids_walker(Node *node, substitute_phv_relids_context *context)
static void fix_append_rel_relids(PlannerInfo *root, int varno, Relids subrelids)
static Node * remove_useless_results_recurse(PlannerInfo *root, Node *jtnode, Node **parent_quals, Relids *dropped_outer_joins)
static Query * pullup_replace_vars_subquery(Query *query, pullup_replace_vars_context *context)
Relids get_relids_for_join(Query *query, int joinrelid)
void pull_up_subqueries(PlannerInfo *root)
Relids get_relids_in_jointree(Node *jtnode, bool include_outer_joins, bool include_inner_joins)
static int get_result_relid(PlannerInfo *root, Node *jtnode)
Query * preprocess_relation_rtes(PlannerInfo *root)
Definition: prepjointree.c:417
static Node * pull_up_simple_values(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
struct reduce_outer_joins_pass1_state reduce_outer_joins_pass1_state
struct reduce_outer_joins_partial_state reduce_outer_joins_partial_state
static bool is_safe_append_member(Query *subquery)
struct pullup_replace_vars_context pullup_replace_vars_context
static Node * pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node, Node **jtlink1, Relids available_rels1, Node **jtlink2, Relids available_rels2)
Definition: prepjointree.c:831
void reduce_outer_joins(PlannerInfo *root)
static Query * expand_virtual_generated_columns(PlannerInfo *root, Query *parse, RangeTblEntry *rte, int rt_index, Relation relation)
Definition: prepjointree.c:486
static bool find_dependent_phvs(PlannerInfo *root, int varno)
static bool jointree_contains_lateral_outer_refs(PlannerInfo *root, Node *jtnode, bool restricted, Relids safe_upper_varnos)
struct reduce_outer_joins_pass2_state reduce_outer_joins_pass2_state
static Node * pullup_replace_vars(Node *expr, pullup_replace_vars_context *context)
static bool is_simple_union_all(Query *subquery)
static bool find_dependent_phvs_in_jointree(PlannerInfo *root, Node *node, int varno)
@ ANY_SUBLINK
Definition: primnodes.h:1031
@ EXISTS_SUBLINK
Definition: primnodes.h:1029
#define NUM_MERGE_MATCH_KINDS
Definition: primnodes.h:2026
@ IS_NOT_NULL
Definition: primnodes.h:1977
@ MERGE_WHEN_NOT_MATCHED_BY_TARGET
Definition: primnodes.h:2023
@ MERGE_WHEN_NOT_MATCHED_BY_SOURCE
Definition: primnodes.h:2022
@ MERGE_WHEN_MATCHED
Definition: primnodes.h:2021
tree ctl root
Definition: radixtree.h:1857
static struct subre * parse(struct vars *v, int stopper, int type, struct state *init, struct state *final)
Definition: regcomp.c:717
#define RelationGetDescr(relation)
Definition: rel.h:541
Node * build_generation_expression(Relation rel, int attrno)
void IncrementVarSublevelsUp_rtable(List *rtable, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:904
void ChangeVarNodes(Node *node, int rt_index, int new_index, int sublevels_up)
Definition: rewriteManip.c:733
void OffsetVarNodes(Node *node, int offset, int sublevels_up)
Definition: rewriteManip.c:476
void CombineRangeTables(List **dst_rtable, List **dst_perminfos, List *src_rtable, List *src_perminfos)
Definition: rewriteManip.c:347
Node * add_nulling_relids(Node *node, const Bitmapset *target_relids, const Bitmapset *added_relids)
Node * remove_nulling_relids(Node *node, const Bitmapset *removable_relids, const Bitmapset *except_relids)
Node * replace_rte_variables(Node *node, int target_varno, int sublevels_up, replace_rte_variables_callback callback, void *callback_arg, bool *outer_hasSubLinks)
Node * ReplaceVarFromTargetList(Var *var, RangeTblEntry *target_rte, List *targetlist, int result_relation, ReplaceVarsNoMatchOption nomatch_option, int nomatch_varno)
void IncrementVarSublevelsUp(Node *node, int delta_sublevels_up, int min_sublevels_up)
Definition: rewriteManip.c:881
@ REPLACEVARS_REPORT_ERROR
Definition: rewriteManip.h:39
void check_stack_depth(void)
Definition: stack_depth.c:95
Index child_relid
Definition: pathnodes.h:3193
List * translated_vars
Definition: pathnodes.h:3220
Index parent_relid
Definition: pathnodes.h:3192
int num_child_cols
Definition: pathnodes.h:3228
Oid parent_reltype
Definition: pathnodes.h:3201
Node * quals
Definition: primnodes.h:2358
List * fromlist
Definition: primnodes.h:2357
Node * quals
Definition: primnodes.h:2338
JoinType jointype
Definition: primnodes.h:2329
int rtindex
Definition: primnodes.h:2342
Node * larg
Definition: primnodes.h:2331
bool isNatural
Definition: primnodes.h:2330
Node * rarg
Definition: primnodes.h:2332
Definition: pg_list.h:54
Definition: nodes.h:135
NullTestType nulltesttype
Definition: primnodes.h:1984
ParseLoc location
Definition: primnodes.h:1987
Expr * arg
Definition: primnodes.h:1983
Relids phnullingrels
Definition: pathnodes.h:3019
Index phlevelsup
Definition: pathnodes.h:3025
List * minmax_aggs
Definition: pathnodes.h:515
List * processed_tlist
Definition: pathnodes.h:499
bool hasRecursion
Definition: pathnodes.h:547
List * cte_plan_ids
Definition: pathnodes.h:333
int last_rinfo_serial
Definition: pathnodes.h:371
Index qual_security_level
Definition: pathnodes.h:532
List * init_plans
Definition: pathnodes.h:327
bool assumeReplanning
Definition: pathnodes.h:549
List * multiexpr_params
Definition: pathnodes.h:336
List * row_identity_vars
Definition: pathnodes.h:396
bool ec_merging_done
Definition: pathnodes.h:345
Bitmapset * outer_params
Definition: pathnodes.h:249
Index query_level
Definition: pathnodes.h:233
List * append_rel_list
Definition: pathnodes.h:393
struct Path * non_recursive_path
Definition: pathnodes.h:577
List * placeholder_list
Definition: pathnodes.h:402
PlannerGlobal * glob
Definition: pathnodes.h:230
List * join_domains
Definition: pathnodes.h:339
List * eq_classes
Definition: pathnodes.h:342
int wt_param_id
Definition: pathnodes.h:575
List * plan_params
Definition: pathnodes.h:248
List * processed_groupClause
Definition: pathnodes.h:476
List * processed_distinctClause
Definition: pathnodes.h:488
Query * parse
Definition: pathnodes.h:227
List * rowMarks
Definition: pathnodes.h:399
List * update_colnos
Definition: pathnodes.h:507
bool placeholdersFrozen
Definition: pathnodes.h:545
List * join_info_list
Definition: pathnodes.h:368
char * plan_name
Definition: pathnodes.h:239
Relids all_result_relids
Definition: pathnodes.h:382
Relids leaf_result_relids
Definition: pathnodes.h:384
List * rowMarks
Definition: parsenodes.h:234
Node * limitCount
Definition: parsenodes.h:231
FromExpr * jointree
Definition: parsenodes.h:182
Node * setOperations
Definition: parsenodes.h:236
List * cteList
Definition: parsenodes.h:173
List * groupClause
Definition: parsenodes.h:216
Node * havingQual
Definition: parsenodes.h:222
List * rtable
Definition: parsenodes.h:175
Node * limitOffset
Definition: parsenodes.h:230
CmdType commandType
Definition: parsenodes.h:121
List * targetList
Definition: parsenodes.h:198
List * groupingSets
Definition: parsenodes.h:220
List * distinctClause
Definition: parsenodes.h:226
List * sortClause
Definition: parsenodes.h:228
TableFunc * tablefunc
Definition: parsenodes.h:1215
bool funcordinality
Definition: parsenodes.h:1210
struct TableSampleClause * tablesample
Definition: parsenodes.h:1129
Query * subquery
Definition: parsenodes.h:1135
List * values_lists
Definition: parsenodes.h:1221
JoinType jointype
Definition: parsenodes.h:1182
List * functions
Definition: parsenodes.h:1208
RTEKind rtekind
Definition: parsenodes.h:1078
Form_pg_class rd_rel
Definition: rel.h:111
SetOperation op
Definition: parsenodes.h:2255
AttrNumber resno
Definition: primnodes.h:2241
bool has_generated_virtual
Definition: tupdesc.h:47
TupleConstr * constr
Definition: tupdesc.h:141
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
Index varlevelsup
Definition: primnodes.h:294
Relids * nullingrels
Definition: prepjointree.c:56
nullingrel_info * nullinfo
Definition: prepjointree.c:79
ReplaceWrapOption wrap_option
Definition: prepjointree.c:83
RangeTblEntry * target_rte
Definition: prepjointree.c:74
Definition: regcomp.c:282
JoinExpr * convert_ANY_sublink_to_join(PlannerInfo *root, SubLink *sublink, Relids available_rels)
Definition: subselect.c:1335
ScalarArrayOpExpr * convert_VALUES_to_ANY(PlannerInfo *root, Node *testexpr, Query *values)
Definition: subselect.c:1229
JoinExpr * convert_EXISTS_sublink_to_join(PlannerInfo *root, SubLink *sublink, bool under_not, Relids available_rels)
Definition: subselect.c:1452
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
bool tlist_same_datatypes(List *tlist, List *colTypes, bool junkOK)
Definition: tlist.c:248
static FormData_pg_attribute * TupleDescAttr(TupleDesc tupdesc, int i)
Definition: tupdesc.h:160
bool contain_vars_of_level(Node *node, int levelsup)
Definition: var.c:444
Relids pull_varnos_of_level(PlannerInfo *root, Node *node, int levelsup)
Definition: var.c:140
Relids pull_varnos(PlannerInfo *root, Node *node)
Definition: var.c:114
Node * flatten_join_alias_vars(PlannerInfo *root, Query *query, Node *node)
Definition: var.c:789