PostgreSQL Source Code git master
sharedtuplestore.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * sharedtuplestore.c
4 * Simple mechanism for sharing tuples between backends.
5 *
6 * This module contains a shared temporary tuple storage mechanism providing
7 * a parallel-aware subset of the features of tuplestore.c. Multiple backends
8 * can write to a SharedTuplestore, and then multiple backends can later scan
9 * the stored tuples. Currently, the only scan type supported is a parallel
10 * scan where each backend reads an arbitrary subset of the tuples that were
11 * written.
12 *
13 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
14 * Portions Copyright (c) 1994, Regents of the University of California
15 *
16 * IDENTIFICATION
17 * src/backend/utils/sort/sharedtuplestore.c
18 *
19 *-------------------------------------------------------------------------
20 */
21
22#include "postgres.h"
23
24#include "access/htup.h"
25#include "access/htup_details.h"
26#include "storage/buffile.h"
27#include "storage/lwlock.h"
30
31/*
32 * The size of chunks, in pages. This is somewhat arbitrarily set to match
33 * the size of HASH_CHUNK, so that Parallel Hash obtains new chunks of tuples
34 * at approximately the same rate as it allocates new chunks of memory to
35 * insert them into.
36 */
37#define STS_CHUNK_PAGES 4
38#define STS_CHUNK_HEADER_SIZE offsetof(SharedTuplestoreChunk, data)
39#define STS_CHUNK_DATA_SIZE (STS_CHUNK_PAGES * BLCKSZ - STS_CHUNK_HEADER_SIZE)
40
41/* Chunk written to disk. */
43{
44 int ntuples; /* Number of tuples in this chunk. */
45 int overflow; /* If overflow, how many including this one? */
48
49/* Per-participant shared state. */
51{
53 BlockNumber read_page; /* Page number for next read. */
54 BlockNumber npages; /* Number of pages written. */
55 bool writing; /* Used only for assertions. */
57
58/* The control object that lives in shared memory. */
60{
61 int nparticipants; /* Number of participants that can write. */
62 int flags; /* Flag bits from SHARED_TUPLESTORE_XXX */
63 size_t meta_data_size; /* Size of per-tuple header. */
64 char name[NAMEDATALEN]; /* A name for this tuplestore. */
65
66 /* Followed by per-participant shared state. */
68};
69
70/* Per-participant state that lives in backend-local memory. */
72{
73 int participant; /* My participant number. */
74 SharedTuplestore *sts; /* The shared state. */
75 SharedFileSet *fileset; /* The SharedFileSet holding files. */
76 MemoryContext context; /* Memory context for buffers. */
77
78 /* State for reading. */
79 int read_participant; /* The current participant to read from. */
80 BufFile *read_file; /* The current file to read from. */
81 int read_ntuples_available; /* The number of tuples in chunk. */
82 int read_ntuples; /* How many tuples have we read from chunk? */
83 size_t read_bytes; /* How many bytes have we read from chunk? */
84 char *read_buffer; /* A buffer for loading tuples. */
86 BlockNumber read_next_page; /* Lowest block we'll consider reading. */
87
88 /* State for writing. */
89 SharedTuplestoreChunk *write_chunk; /* Buffer for writing. */
90 BufFile *write_file; /* The current file to write to. */
91 char *write_pointer; /* Current write pointer within chunk. */
92 char *write_end; /* One past the end of the current chunk. */
93};
94
95static void sts_filename(char *name, SharedTuplestoreAccessor *accessor,
96 int participant);
97
98/*
99 * Return the amount of shared memory required to hold SharedTuplestore for a
100 * given number of participants.
101 */
102size_t
103sts_estimate(int participants)
104{
105 return offsetof(SharedTuplestore, participants) +
106 sizeof(SharedTuplestoreParticipant) * participants;
107}
108
109/*
110 * Initialize a SharedTuplestore in existing shared memory. There must be
111 * space for sts_estimate(participants) bytes. If flags includes the value
112 * SHARED_TUPLESTORE_SINGLE_PASS, the files may in future be removed more
113 * eagerly (but this isn't yet implemented).
114 *
115 * Tuples that are stored may optionally carry a piece of fixed sized
116 * meta-data which will be retrieved along with the tuple. This is useful for
117 * the hash values used in multi-batch hash joins, but could have other
118 * applications.
119 *
120 * The caller must supply a SharedFileSet, which is essentially a directory
121 * that will be cleaned up automatically, and a name which must be unique
122 * across all SharedTuplestores created in the same SharedFileSet.
123 */
125sts_initialize(SharedTuplestore *sts, int participants,
126 int my_participant_number,
127 size_t meta_data_size,
128 int flags,
129 SharedFileSet *fileset,
130 const char *name)
131{
132 SharedTuplestoreAccessor *accessor;
133 int i;
134
135 Assert(my_participant_number < participants);
136
137 sts->nparticipants = participants;
138 sts->meta_data_size = meta_data_size;
139 sts->flags = flags;
140
141 if (strlen(name) > sizeof(sts->name) - 1)
142 elog(ERROR, "SharedTuplestore name too long");
143 strcpy(sts->name, name);
144
145 /*
146 * Limit meta-data so it + tuple size always fits into a single chunk.
147 * sts_puttuple() and sts_read_tuple() could be made to support scenarios
148 * where that's not the case, but it's not currently required. If so,
149 * meta-data size probably should be made variable, too.
150 */
151 if (meta_data_size + sizeof(uint32) >= STS_CHUNK_DATA_SIZE)
152 elog(ERROR, "meta-data too long");
153
154 for (i = 0; i < participants; ++i)
155 {
157 LWTRANCHE_SHARED_TUPLESTORE);
158 sts->participants[i].read_page = 0;
159 sts->participants[i].npages = 0;
160 sts->participants[i].writing = false;
161 }
162
163 accessor = palloc0(sizeof(SharedTuplestoreAccessor));
164 accessor->participant = my_participant_number;
165 accessor->sts = sts;
166 accessor->fileset = fileset;
167 accessor->context = CurrentMemoryContext;
168
169 return accessor;
170}
171
172/*
173 * Attach to a SharedTuplestore that has been initialized by another backend,
174 * so that this backend can read and write tuples.
175 */
178 int my_participant_number,
179 SharedFileSet *fileset)
180{
181 SharedTuplestoreAccessor *accessor;
182
183 Assert(my_participant_number < sts->nparticipants);
184
185 accessor = palloc0(sizeof(SharedTuplestoreAccessor));
186 accessor->participant = my_participant_number;
187 accessor->sts = sts;
188 accessor->fileset = fileset;
189 accessor->context = CurrentMemoryContext;
190
191 return accessor;
192}
193
194static void
196{
197 size_t size;
198
199 size = STS_CHUNK_PAGES * BLCKSZ;
200 BufFileWrite(accessor->write_file, accessor->write_chunk, size);
201 memset(accessor->write_chunk, 0, size);
202 accessor->write_pointer = &accessor->write_chunk->data[0];
203 accessor->sts->participants[accessor->participant].npages +=
205}
206
207/*
208 * Finish writing tuples. This must be called by all backends that have
209 * written data before any backend begins reading it.
210 */
211void
213{
214 if (accessor->write_file != NULL)
215 {
216 sts_flush_chunk(accessor);
217 BufFileClose(accessor->write_file);
218 pfree(accessor->write_chunk);
219 accessor->write_chunk = NULL;
220 accessor->write_file = NULL;
221 accessor->sts->participants[accessor->participant].writing = false;
222 }
223}
224
225/*
226 * Prepare to rescan. Only one participant must call this. After it returns,
227 * all participants may call sts_begin_parallel_scan() and then loop over
228 * sts_parallel_scan_next(). This function must not be called concurrently
229 * with a scan, and synchronization to avoid that is the caller's
230 * responsibility.
231 */
232void
234{
235 int i;
236
237 /*
238 * Reset the shared read head for all participants' files. Also set the
239 * initial chunk size to the minimum (any increases from that size will be
240 * recorded in chunk_expansion_log).
241 */
242 for (i = 0; i < accessor->sts->nparticipants; ++i)
243 {
244 accessor->sts->participants[i].read_page = 0;
245 }
246}
247
248/*
249 * Begin scanning the contents in parallel.
250 */
251void
253{
255
256 /* End any existing scan that was in progress. */
257 sts_end_parallel_scan(accessor);
258
259 /*
260 * Any backend that might have written into this shared tuplestore must
261 * have called sts_end_write(), so that all buffers are flushed and the
262 * files have stopped growing.
263 */
264 for (i = 0; i < accessor->sts->nparticipants; ++i)
265 Assert(!accessor->sts->participants[i].writing);
266
267 /*
268 * We will start out reading the file that THIS backend wrote. There may
269 * be some caching locality advantage to that.
270 */
271 accessor->read_participant = accessor->participant;
272 accessor->read_file = NULL;
273 accessor->read_next_page = 0;
274}
275
276/*
277 * Finish a parallel scan, freeing associated backend-local resources.
278 */
279void
281{
282 /*
283 * Here we could delete all files if SHARED_TUPLESTORE_SINGLE_PASS, but
284 * we'd probably need a reference count of current parallel scanners so we
285 * could safely do it only when the reference count reaches zero.
286 */
287 if (accessor->read_file != NULL)
288 {
289 BufFileClose(accessor->read_file);
290 accessor->read_file = NULL;
291 }
292}
293
294/*
295 * Write a tuple. If a meta-data size was provided to sts_initialize, then a
296 * pointer to meta data of that size must be provided.
297 */
298void
299sts_puttuple(SharedTuplestoreAccessor *accessor, void *meta_data,
300 MinimalTuple tuple)
301{
302 size_t size;
303
304 /* Do we have our own file yet? */
305 if (accessor->write_file == NULL)
306 {
307 SharedTuplestoreParticipant *participant;
308 char name[MAXPGPATH];
309 MemoryContext oldcxt;
310
311 /* Create one. Only this backend will write into it. */
312 sts_filename(name, accessor, accessor->participant);
313
314 oldcxt = MemoryContextSwitchTo(accessor->context);
315 accessor->write_file =
316 BufFileCreateFileSet(&accessor->fileset->fs, name);
317 MemoryContextSwitchTo(oldcxt);
318
319 /* Set up the shared state for this backend's file. */
320 participant = &accessor->sts->participants[accessor->participant];
321 participant->writing = true; /* for assertions only */
322 }
323
324 /* Do we have space? */
325 size = accessor->sts->meta_data_size + tuple->t_len;
326 if (accessor->write_pointer + size > accessor->write_end)
327 {
328 if (accessor->write_chunk == NULL)
329 {
330 /* First time through. Allocate chunk. */
331 accessor->write_chunk = (SharedTuplestoreChunk *)
333 STS_CHUNK_PAGES * BLCKSZ);
334 accessor->write_chunk->ntuples = 0;
335 accessor->write_pointer = &accessor->write_chunk->data[0];
336 accessor->write_end = (char *)
337 accessor->write_chunk + STS_CHUNK_PAGES * BLCKSZ;
338 }
339 else
340 {
341 /* See if flushing helps. */
342 sts_flush_chunk(accessor);
343 }
344
345 /* It may still not be enough in the case of a gigantic tuple. */
346 if (accessor->write_pointer + size > accessor->write_end)
347 {
348 size_t written;
349
350 /*
351 * We'll write the beginning of the oversized tuple, and then
352 * write the rest in some number of 'overflow' chunks.
353 *
354 * sts_initialize() verifies that the size of the tuple +
355 * meta-data always fits into a chunk. Because the chunk has been
356 * flushed above, we can be sure to have all of a chunk's usable
357 * space available.
358 */
359 Assert(accessor->write_pointer + accessor->sts->meta_data_size +
360 sizeof(uint32) < accessor->write_end);
361
362 /* Write the meta-data as one chunk. */
363 if (accessor->sts->meta_data_size > 0)
364 memcpy(accessor->write_pointer, meta_data,
365 accessor->sts->meta_data_size);
366
367 /*
368 * Write as much of the tuple as we can fit. This includes the
369 * tuple's size at the start.
370 */
371 written = accessor->write_end - accessor->write_pointer -
372 accessor->sts->meta_data_size;
373 memcpy(accessor->write_pointer + accessor->sts->meta_data_size,
374 tuple, written);
375 ++accessor->write_chunk->ntuples;
376 size -= accessor->sts->meta_data_size;
377 size -= written;
378 /* Now write as many overflow chunks as we need for the rest. */
379 while (size > 0)
380 {
381 size_t written_this_chunk;
382
383 sts_flush_chunk(accessor);
384
385 /*
386 * How many overflow chunks to go? This will allow readers to
387 * skip all of them at once instead of reading each one.
388 */
389 accessor->write_chunk->overflow = (size + STS_CHUNK_DATA_SIZE - 1) /
391 written_this_chunk =
392 Min(accessor->write_end - accessor->write_pointer, size);
393 memcpy(accessor->write_pointer, (char *) tuple + written,
394 written_this_chunk);
395 accessor->write_pointer += written_this_chunk;
396 size -= written_this_chunk;
397 written += written_this_chunk;
398 }
399 return;
400 }
401 }
402
403 /* Copy meta-data and tuple into buffer. */
404 if (accessor->sts->meta_data_size > 0)
405 memcpy(accessor->write_pointer, meta_data,
406 accessor->sts->meta_data_size);
407 memcpy(accessor->write_pointer + accessor->sts->meta_data_size, tuple,
408 tuple->t_len);
409 accessor->write_pointer += size;
410 ++accessor->write_chunk->ntuples;
411}
412
413static MinimalTuple
414sts_read_tuple(SharedTuplestoreAccessor *accessor, void *meta_data)
415{
416 MinimalTuple tuple;
417 uint32 size;
418 size_t remaining_size;
419 size_t this_chunk_size;
420 char *destination;
421
422 /*
423 * We'll keep track of bytes read from this chunk so that we can detect an
424 * overflowing tuple and switch to reading overflow pages.
425 */
426 if (accessor->sts->meta_data_size > 0)
427 {
428 BufFileReadExact(accessor->read_file, meta_data, accessor->sts->meta_data_size);
429 accessor->read_bytes += accessor->sts->meta_data_size;
430 }
431 BufFileReadExact(accessor->read_file, &size, sizeof(size));
432 accessor->read_bytes += sizeof(size);
433 if (size > accessor->read_buffer_size)
434 {
435 size_t new_read_buffer_size;
436
437 if (accessor->read_buffer != NULL)
438 pfree(accessor->read_buffer);
439 new_read_buffer_size = Max(size, accessor->read_buffer_size * 2);
440 accessor->read_buffer =
441 MemoryContextAlloc(accessor->context, new_read_buffer_size);
442 accessor->read_buffer_size = new_read_buffer_size;
443 }
444 remaining_size = size - sizeof(uint32);
445 this_chunk_size = Min(remaining_size,
446 BLCKSZ * STS_CHUNK_PAGES - accessor->read_bytes);
447 destination = accessor->read_buffer + sizeof(uint32);
448 BufFileReadExact(accessor->read_file, destination, this_chunk_size);
449 accessor->read_bytes += this_chunk_size;
450 remaining_size -= this_chunk_size;
451 destination += this_chunk_size;
452 ++accessor->read_ntuples;
453
454 /* Check if we need to read any overflow chunks. */
455 while (remaining_size > 0)
456 {
457 /* We are now positioned at the start of an overflow chunk. */
458 SharedTuplestoreChunk chunk_header;
459
460 BufFileReadExact(accessor->read_file, &chunk_header, STS_CHUNK_HEADER_SIZE);
462 if (chunk_header.overflow == 0)
465 errmsg("unexpected chunk in shared tuplestore temporary file"),
466 errdetail_internal("Expected overflow chunk.")));
467 accessor->read_next_page += STS_CHUNK_PAGES;
468 this_chunk_size = Min(remaining_size,
469 BLCKSZ * STS_CHUNK_PAGES -
471 BufFileReadExact(accessor->read_file, destination, this_chunk_size);
472 accessor->read_bytes += this_chunk_size;
473 remaining_size -= this_chunk_size;
474 destination += this_chunk_size;
475
476 /*
477 * These will be used to count regular tuples following the oversized
478 * tuple that spilled into this overflow chunk.
479 */
480 accessor->read_ntuples = 0;
481 accessor->read_ntuples_available = chunk_header.ntuples;
482 }
483
484 tuple = (MinimalTuple) accessor->read_buffer;
485 tuple->t_len = size;
486
487 return tuple;
488}
489
490/*
491 * Get the next tuple in the current parallel scan.
492 */
495{
497 BlockNumber read_page;
498 bool eof;
499
500 for (;;)
501 {
502 /* Can we read more tuples from the current chunk? */
503 if (accessor->read_ntuples < accessor->read_ntuples_available)
504 return sts_read_tuple(accessor, meta_data);
505
506 /* Find the location of a new chunk to read. */
507 p = &accessor->sts->participants[accessor->read_participant];
508
510 /* We can skip directly past overflow pages we know about. */
511 if (p->read_page < accessor->read_next_page)
512 p->read_page = accessor->read_next_page;
513 eof = p->read_page >= p->npages;
514 if (!eof)
515 {
516 /* Claim the next chunk. */
517 read_page = p->read_page;
518 /* Advance the read head for the next reader. */
520 accessor->read_next_page = p->read_page;
521 }
522 LWLockRelease(&p->lock);
523
524 if (!eof)
525 {
526 SharedTuplestoreChunk chunk_header;
527
528 /* Make sure we have the file open. */
529 if (accessor->read_file == NULL)
530 {
531 char name[MAXPGPATH];
532 MemoryContext oldcxt;
533
534 sts_filename(name, accessor, accessor->read_participant);
535
536 oldcxt = MemoryContextSwitchTo(accessor->context);
537 accessor->read_file =
538 BufFileOpenFileSet(&accessor->fileset->fs, name, O_RDONLY,
539 false);
540 MemoryContextSwitchTo(oldcxt);
541 }
542
543 /* Seek and load the chunk header. */
544 if (BufFileSeekBlock(accessor->read_file, read_page) != 0)
547 errmsg("could not seek to block %u in shared tuplestore temporary file",
548 read_page)));
549 BufFileReadExact(accessor->read_file, &chunk_header, STS_CHUNK_HEADER_SIZE);
550
551 /*
552 * If this is an overflow chunk, we skip it and any following
553 * overflow chunks all at once.
554 */
555 if (chunk_header.overflow > 0)
556 {
557 accessor->read_next_page = read_page +
558 chunk_header.overflow * STS_CHUNK_PAGES;
559 continue;
560 }
561
562 accessor->read_ntuples = 0;
563 accessor->read_ntuples_available = chunk_header.ntuples;
565
566 /* Go around again, so we can get a tuple from this chunk. */
567 }
568 else
569 {
570 if (accessor->read_file != NULL)
571 {
572 BufFileClose(accessor->read_file);
573 accessor->read_file = NULL;
574 }
575
576 /*
577 * Try the next participant's file. If we've gone full circle,
578 * we're done.
579 */
580 accessor->read_participant = (accessor->read_participant + 1) %
581 accessor->sts->nparticipants;
582 if (accessor->read_participant == accessor->participant)
583 break;
584 accessor->read_next_page = 0;
585
586 /* Go around again, so we can get a chunk from this file. */
587 }
588 }
589
590 return NULL;
591}
592
593/*
594 * Create the name used for the BufFile that a given participant will write.
595 */
596static void
597sts_filename(char *name, SharedTuplestoreAccessor *accessor, int participant)
598{
599 snprintf(name, MAXPGPATH, "%s.p%d", accessor->sts->name, participant);
600}
uint32 BlockNumber
Definition: block.h:31
BufFile * BufFileOpenFileSet(FileSet *fileset, const char *name, int mode, bool missing_ok)
Definition: buffile.c:291
int BufFileSeekBlock(BufFile *file, int64 blknum)
Definition: buffile.c:851
void BufFileReadExact(BufFile *file, void *ptr, size_t size)
Definition: buffile.c:654
void BufFileWrite(BufFile *file, const void *ptr, size_t size)
Definition: buffile.c:676
BufFile * BufFileCreateFileSet(FileSet *fileset, const char *name)
Definition: buffile.c:267
void BufFileClose(BufFile *file)
Definition: buffile.c:412
#define Min(x, y)
Definition: c.h:1008
#define PG_USED_FOR_ASSERTS_ONLY
Definition: c.h:228
#define Max(x, y)
Definition: c.h:1002
#define FLEXIBLE_ARRAY_MEMBER
Definition: c.h:475
uint32_t uint32
Definition: c.h:543
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1243
int errcode_for_file_access(void)
Definition: elog.c:886
int errmsg(const char *fmt,...)
Definition: elog.c:1080
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
Assert(PointerIsAligned(start, uint64))
MinimalTupleData * MinimalTuple
Definition: htup.h:27
int i
Definition: isn.c:77
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
bool LWLockAcquire(LWLock *lock, LWLockMode mode)
Definition: lwlock.c:1174
void LWLockRelease(LWLock *lock)
Definition: lwlock.c:1894
void LWLockInitialize(LWLock *lock, int tranche_id)
Definition: lwlock.c:698
@ LW_EXCLUSIVE
Definition: lwlock.h:112
void * MemoryContextAlloc(MemoryContext context, Size size)
Definition: mcxt.c:1229
void * MemoryContextAllocZero(MemoryContext context, Size size)
Definition: mcxt.c:1263
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
MemoryContext CurrentMemoryContext
Definition: mcxt.c:160
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
#define NAMEDATALEN
#define MAXPGPATH
#define snprintf
Definition: port.h:260
void sts_reinitialize(SharedTuplestoreAccessor *accessor)
static MinimalTuple sts_read_tuple(SharedTuplestoreAccessor *accessor, void *meta_data)
SharedTuplestoreAccessor * sts_attach(SharedTuplestore *sts, int my_participant_number, SharedFileSet *fileset)
static void sts_flush_chunk(SharedTuplestoreAccessor *accessor)
#define STS_CHUNK_HEADER_SIZE
MinimalTuple sts_parallel_scan_next(SharedTuplestoreAccessor *accessor, void *meta_data)
struct SharedTuplestoreChunk SharedTuplestoreChunk
struct SharedTuplestoreParticipant SharedTuplestoreParticipant
static void sts_filename(char *name, SharedTuplestoreAccessor *accessor, int participant)
#define STS_CHUNK_PAGES
void sts_end_write(SharedTuplestoreAccessor *accessor)
SharedTuplestoreAccessor * sts_initialize(SharedTuplestore *sts, int participants, int my_participant_number, size_t meta_data_size, int flags, SharedFileSet *fileset, const char *name)
size_t sts_estimate(int participants)
#define STS_CHUNK_DATA_SIZE
void sts_end_parallel_scan(SharedTuplestoreAccessor *accessor)
void sts_puttuple(SharedTuplestoreAccessor *accessor, void *meta_data, MinimalTuple tuple)
void sts_begin_parallel_scan(SharedTuplestoreAccessor *accessor)
Definition: lwlock.h:42
SharedTuplestore * sts
SharedTuplestoreChunk * write_chunk
char data[FLEXIBLE_ARRAY_MEMBER]
SharedTuplestoreParticipant participants[FLEXIBLE_ARRAY_MEMBER]
char name[NAMEDATALEN]
const char * name