2 * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
4 * This file is part of FFmpeg.
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * @addtogroup lavu_math
24 * Mathematical utilities for working with timestamp and time base.
27 #ifndef AVUTIL_MATHEMATICS_H
28 #define AVUTIL_MATHEMATICS_H
32 #include "attributes.h"
37 #define M_E 2.7182818284590452354 /* e */
40 #define M_Ef 2.7182818284590452354f /* e */
43 #define M_LN2 0.69314718055994530942 /* log_e 2 */
46 #define M_LN2f 0.69314718055994530942f /* log_e 2 */
49 #define M_LN10 2.30258509299404568402 /* log_e 10 */
52 #define M_LN10f 2.30258509299404568402f /* log_e 10 */
55 #define M_LOG2_10 3.32192809488736234787 /* log_2 10 */
58 #define M_LOG2_10f 3.32192809488736234787f /* log_2 10 */
61 #define M_PHI 1.61803398874989484820 /* phi / golden ratio */
64 #define M_PHIf 1.61803398874989484820f /* phi / golden ratio */
67 #define M_PI 3.14159265358979323846 /* pi */
70 #define M_PIf 3.14159265358979323846f /* pi */
73 #define M_PI_2 1.57079632679489661923 /* pi/2 */
76 #define M_PI_2f 1.57079632679489661923f /* pi/2 */
79 #define M_PI_4 0.78539816339744830962 /* pi/4 */
82 #define M_PI_4f 0.78539816339744830962f /* pi/4 */
85 #define M_1_PI 0.31830988618379067154 /* 1/pi */
88 #define M_1_PIf 0.31830988618379067154f /* 1/pi */
91 #define M_2_PI 0.63661977236758134308 /* 2/pi */
94 #define M_2_PIf 0.63661977236758134308f /* 2/pi */
97 #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
100 #define M_2_SQRTPIf 1.12837916709551257390f /* 2/sqrt(pi) */
103 #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
106 #define M_SQRT1_2f 0.70710678118654752440f /* 1/sqrt(2) */
109 #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
112 #define M_SQRT2f 1.41421356237309504880f /* sqrt(2) */
115 #define NAN av_int2float(0x7fc00000)
118 #define INFINITY av_int2float(0x7f800000)
122 * @addtogroup lavu_math
131 AV_ROUND_ZERO
= 0, ///< Round toward zero.
132 AV_ROUND_INF
= 1, ///< Round away from zero.
133 AV_ROUND_DOWN
= 2, ///< Round toward -infinity.
134 AV_ROUND_UP
= 3, ///< Round toward +infinity.
135 AV_ROUND_NEAR_INF
= 5, ///< Round to nearest and halfway cases away from zero.
137 * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through
138 * unchanged, avoiding special cases for #AV_NOPTS_VALUE.
140 * Unlike other values of the enumeration AVRounding, this value is a
141 * bitmask that must be used in conjunction with another value of the
142 * enumeration through a bitwise OR, in order to set behavior for normal
146 * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
148 * // Calculating 3 * 1 / 2
149 * // 3 / 2 is rounded up to 2
152 * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
153 * // Rescaling AV_NOPTS_VALUE:
154 * // AV_NOPTS_VALUE == INT64_MIN
155 * // AV_NOPTS_VALUE is passed through
156 * // => AV_NOPTS_VALUE
159 AV_ROUND_PASS_MINMAX
= 8192,
163 * Compute the greatest common divisor of two integer operands.
167 * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0;
168 * if a == 0 and b == 0, returns 0.
170 int64_t av_const
av_gcd(int64_t a
, int64_t b
);
173 * Rescale a 64-bit integer with rounding to nearest.
175 * The operation is mathematically equivalent to `a * b / c`, but writing that
176 * directly can overflow.
178 * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF.
180 * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd()
182 int64_t av_rescale(int64_t a
, int64_t b
, int64_t c
) av_const
;
185 * Rescale a 64-bit integer with specified rounding.
187 * The operation is mathematically equivalent to `a * b / c`, but writing that
188 * directly can overflow, and does not support different rounding methods.
189 * If the result is not representable then INT64_MIN is returned.
191 * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd()
193 int64_t av_rescale_rnd(int64_t a
, int64_t b
, int64_t c
, enum AVRounding rnd
) av_const
;
196 * Rescale a 64-bit integer by 2 rational numbers.
198 * The operation is mathematically equivalent to `a * bq / cq`.
200 * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF.
202 * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd()
204 int64_t av_rescale_q(int64_t a
, AVRational bq
, AVRational cq
) av_const
;
207 * Rescale a 64-bit integer by 2 rational numbers with specified rounding.
209 * The operation is mathematically equivalent to `a * bq / cq`.
211 * @see av_rescale(), av_rescale_rnd(), av_rescale_q()
213 int64_t av_rescale_q_rnd(int64_t a
, AVRational bq
, AVRational cq
,
214 enum AVRounding rnd
) av_const
;
217 * Compare two timestamps each in its own time base.
219 * @return One of the following values:
220 * - -1 if `ts_a` is before `ts_b`
221 * - 1 if `ts_a` is after `ts_b`
222 * - 0 if they represent the same position
225 * The result of the function is undefined if one of the timestamps is outside
226 * the `int64_t` range when represented in the other's timebase.
228 int av_compare_ts(int64_t ts_a
, AVRational tb_a
, int64_t ts_b
, AVRational tb_b
);
231 * Compare the remainders of two integer operands divided by a common divisor.
233 * In other words, compare the least significant `log2(mod)` bits of integers
237 * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10 (0x1) < 0x02 % 0x10 (0x2)
238 * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02)
243 * @param mod Divisor; must be a power of 2
245 * - a negative value if `a % mod < b % mod`
246 * - a positive value if `a % mod > b % mod`
247 * - zero if `a % mod == b % mod`
249 int64_t av_compare_mod(uint64_t a
, uint64_t b
, uint64_t mod
);
252 * Rescale a timestamp while preserving known durations.
254 * This function is designed to be called per audio packet to scale the input
255 * timestamp to a different time base. Compared to a simple av_rescale_q()
256 * call, this function is robust against possible inconsistent frame durations.
258 * The `last` parameter is a state variable that must be preserved for all
259 * subsequent calls for the same stream. For the first call, `*last` should be
260 * initialized to #AV_NOPTS_VALUE.
262 * @param[in] in_tb Input time base
263 * @param[in] in_ts Input timestamp
264 * @param[in] fs_tb Duration time base; typically this is finer-grained
265 * (greater) than `in_tb` and `out_tb`
266 * @param[in] duration Duration till the next call to this function (i.e.
267 * duration of the current packet/frame)
268 * @param[in,out] last Pointer to a timestamp expressed in terms of
269 * `fs_tb`, acting as a state variable
270 * @param[in] out_tb Output timebase
271 * @return Timestamp expressed in terms of `out_tb`
273 * @note In the context of this function, "duration" is in term of samples, not
276 int64_t av_rescale_delta(AVRational in_tb
, int64_t in_ts
, AVRational fs_tb
, int duration
, int64_t *last
, AVRational out_tb
);
279 * Add a value to a timestamp.
281 * This function guarantees that when the same value is repeatedly added that
282 * no accumulation of rounding errors occurs.
284 * @param[in] ts Input timestamp
285 * @param[in] ts_tb Input timestamp time base
286 * @param[in] inc Value to be added
287 * @param[in] inc_tb Time base of `inc`
289 int64_t av_add_stable(AVRational ts_tb
, int64_t ts
, AVRational inc_tb
, int64_t inc
);
292 * 0th order modified bessel function of the first kind.
294 double av_bessel_i0(double x
);
300 #endif /* AVUTIL_MATHEMATICS_H */