avfilter/avfiltergraph: fix constant string comparision
[ffmpeg.git] / libavutil / mem.c
1 /*
2 * default memory allocator for libavutil
3 * Copyright (c) 2002 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * default memory allocator for libavutil
25 */
26
27 #define _XOPEN_SOURCE 600
28
29 #include "config.h"
30
31 #include <limits.h>
32 #include <stdint.h>
33 #include <stdlib.h>
34 #include <stdatomic.h>
35 #include <string.h>
36 #if HAVE_MALLOC_H
37 #include <malloc.h>
38 #endif
39
40 #include "attributes.h"
41 #include "avassert.h"
42 #include "dynarray.h"
43 #include "error.h"
44 #include "internal.h"
45 #include "intreadwrite.h"
46 #include "macros.h"
47 #include "mem.h"
48
49 #ifdef MALLOC_PREFIX
50
51 #define malloc AV_JOIN(MALLOC_PREFIX, malloc)
52 #define memalign AV_JOIN(MALLOC_PREFIX, memalign)
53 #define posix_memalign AV_JOIN(MALLOC_PREFIX, posix_memalign)
54 #define realloc AV_JOIN(MALLOC_PREFIX, realloc)
55 #define free AV_JOIN(MALLOC_PREFIX, free)
56
57 void *malloc(size_t size);
58 void *memalign(size_t align, size_t size);
59 int posix_memalign(void **ptr, size_t align, size_t size);
60 void *realloc(void *ptr, size_t size);
61 void free(void *ptr);
62
63 #endif /* MALLOC_PREFIX */
64
65 #define ALIGN (HAVE_SIMD_ALIGN_64 ? 64 : (HAVE_SIMD_ALIGN_32 ? 32 : 16))
66
67 #define FF_MEMORY_POISON 0x2a
68
69 /* NOTE: if you want to override these functions with your own
70 * implementations (not recommended) you have to link libav* as
71 * dynamic libraries and remove -Wl,-Bsymbolic from the linker flags.
72 * Note that this will cost performance. */
73
74 static atomic_size_t max_alloc_size = INT_MAX;
75
76 void av_max_alloc(size_t max){
77 atomic_store_explicit(&max_alloc_size, max, memory_order_relaxed);
78 }
79
80 static int size_mult(size_t a, size_t b, size_t *r)
81 {
82 size_t t;
83
84 #if (!defined(__INTEL_COMPILER) && AV_GCC_VERSION_AT_LEAST(5,1)) || AV_HAS_BUILTIN(__builtin_mul_overflow)
85 if (__builtin_mul_overflow(a, b, &t))
86 return AVERROR(EINVAL);
87 #else
88 t = a * b;
89 /* Hack inspired from glibc: don't try the division if nelem and elsize
90 * are both less than sqrt(SIZE_MAX). */
91 if ((a | b) >= ((size_t)1 << (sizeof(size_t) * 4)) && a && t / a != b)
92 return AVERROR(EINVAL);
93 #endif
94 *r = t;
95 return 0;
96 }
97
98 void *av_malloc(size_t size)
99 {
100 void *ptr = NULL;
101
102 if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed))
103 return NULL;
104
105 #if HAVE_POSIX_MEMALIGN
106 if (size) //OS X on SDK 10.6 has a broken posix_memalign implementation
107 if (posix_memalign(&ptr, ALIGN, size))
108 ptr = NULL;
109 #elif HAVE_ALIGNED_MALLOC
110 ptr = _aligned_malloc(size, ALIGN);
111 #elif HAVE_MEMALIGN
112 #ifndef __DJGPP__
113 ptr = memalign(ALIGN, size);
114 #else
115 ptr = memalign(size, ALIGN);
116 #endif
117 /* Why 64?
118 * Indeed, we should align it:
119 * on 4 for 386
120 * on 16 for 486
121 * on 32 for 586, PPro - K6-III
122 * on 64 for K7 (maybe for P3 too).
123 * Because L1 and L2 caches are aligned on those values.
124 * But I don't want to code such logic here!
125 */
126 /* Why 32?
127 * For AVX ASM. SSE / NEON needs only 16.
128 * Why not larger? Because I did not see a difference in benchmarks ...
129 */
130 /* benchmarks with P3
131 * memalign(64) + 1 3071, 3051, 3032
132 * memalign(64) + 2 3051, 3032, 3041
133 * memalign(64) + 4 2911, 2896, 2915
134 * memalign(64) + 8 2545, 2554, 2550
135 * memalign(64) + 16 2543, 2572, 2563
136 * memalign(64) + 32 2546, 2545, 2571
137 * memalign(64) + 64 2570, 2533, 2558
138 *
139 * BTW, malloc seems to do 8-byte alignment by default here.
140 */
141 #else
142 ptr = malloc(size);
143 #endif
144 if(!ptr && !size) {
145 size = 1;
146 ptr= av_malloc(1);
147 }
148 #if CONFIG_MEMORY_POISONING
149 if (ptr)
150 memset(ptr, FF_MEMORY_POISON, size);
151 #endif
152 return ptr;
153 }
154
155 void *av_realloc(void *ptr, size_t size)
156 {
157 void *ret;
158 if (size > atomic_load_explicit(&max_alloc_size, memory_order_relaxed))
159 return NULL;
160
161 #if HAVE_ALIGNED_MALLOC
162 ret = _aligned_realloc(ptr, size + !size, ALIGN);
163 #else
164 ret = realloc(ptr, size + !size);
165 #endif
166 #if CONFIG_MEMORY_POISONING
167 if (ret && !ptr)
168 memset(ret, FF_MEMORY_POISON, size);
169 #endif
170 return ret;
171 }
172
173 void *av_realloc_f(void *ptr, size_t nelem, size_t elsize)
174 {
175 size_t size;
176 void *r;
177
178 if (size_mult(elsize, nelem, &size)) {
179 av_free(ptr);
180 return NULL;
181 }
182 r = av_realloc(ptr, size);
183 if (!r)
184 av_free(ptr);
185 return r;
186 }
187
188 int av_reallocp(void *ptr, size_t size)
189 {
190 void *val;
191
192 if (!size) {
193 av_freep(ptr);
194 return 0;
195 }
196
197 memcpy(&val, ptr, sizeof(val));
198 val = av_realloc(val, size);
199
200 if (!val) {
201 av_freep(ptr);
202 return AVERROR(ENOMEM);
203 }
204
205 memcpy(ptr, &val, sizeof(val));
206 return 0;
207 }
208
209 void *av_malloc_array(size_t nmemb, size_t size)
210 {
211 size_t result;
212 if (size_mult(nmemb, size, &result) < 0)
213 return NULL;
214 return av_malloc(result);
215 }
216
217 void *av_realloc_array(void *ptr, size_t nmemb, size_t size)
218 {
219 size_t result;
220 if (size_mult(nmemb, size, &result) < 0)
221 return NULL;
222 return av_realloc(ptr, result);
223 }
224
225 int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
226 {
227 void *val;
228
229 memcpy(&val, ptr, sizeof(val));
230 val = av_realloc_f(val, nmemb, size);
231 memcpy(ptr, &val, sizeof(val));
232 if (!val && nmemb && size)
233 return AVERROR(ENOMEM);
234
235 return 0;
236 }
237
238 void av_free(void *ptr)
239 {
240 #if HAVE_ALIGNED_MALLOC
241 _aligned_free(ptr);
242 #else
243 free(ptr);
244 #endif
245 }
246
247 void av_freep(void *arg)
248 {
249 void *val;
250
251 memcpy(&val, arg, sizeof(val));
252 memcpy(arg, &(void *){ NULL }, sizeof(val));
253 av_free(val);
254 }
255
256 void *av_mallocz(size_t size)
257 {
258 void *ptr = av_malloc(size);
259 if (ptr)
260 memset(ptr, 0, size);
261 return ptr;
262 }
263
264 void *av_calloc(size_t nmemb, size_t size)
265 {
266 size_t result;
267 if (size_mult(nmemb, size, &result) < 0)
268 return NULL;
269 return av_mallocz(result);
270 }
271
272 char *av_strdup(const char *s)
273 {
274 char *ptr = NULL;
275 if (s) {
276 size_t len = strlen(s) + 1;
277 ptr = av_realloc(NULL, len);
278 if (ptr)
279 memcpy(ptr, s, len);
280 }
281 return ptr;
282 }
283
284 char *av_strndup(const char *s, size_t len)
285 {
286 char *ret = NULL, *end;
287
288 if (!s)
289 return NULL;
290
291 end = memchr(s, 0, len);
292 if (end)
293 len = end - s;
294
295 ret = av_realloc(NULL, len + 1);
296 if (!ret)
297 return NULL;
298
299 memcpy(ret, s, len);
300 ret[len] = 0;
301 return ret;
302 }
303
304 void *av_memdup(const void *p, size_t size)
305 {
306 void *ptr = NULL;
307 if (p) {
308 ptr = av_malloc(size);
309 if (ptr)
310 memcpy(ptr, p, size);
311 }
312 return ptr;
313 }
314
315 int av_dynarray_add_nofree(void *tab_ptr, int *nb_ptr, void *elem)
316 {
317 void **tab;
318 memcpy(&tab, tab_ptr, sizeof(tab));
319
320 FF_DYNARRAY_ADD(INT_MAX, sizeof(*tab), tab, *nb_ptr, {
321 tab[*nb_ptr] = elem;
322 memcpy(tab_ptr, &tab, sizeof(tab));
323 }, {
324 return AVERROR(ENOMEM);
325 });
326 return 0;
327 }
328
329 void av_dynarray_add(void *tab_ptr, int *nb_ptr, void *elem)
330 {
331 void **tab;
332 memcpy(&tab, tab_ptr, sizeof(tab));
333
334 FF_DYNARRAY_ADD(INT_MAX, sizeof(*tab), tab, *nb_ptr, {
335 tab[*nb_ptr] = elem;
336 memcpy(tab_ptr, &tab, sizeof(tab));
337 }, {
338 *nb_ptr = 0;
339 av_freep(tab_ptr);
340 });
341 }
342
343 void *av_dynarray2_add(void **tab_ptr, int *nb_ptr, size_t elem_size,
344 const uint8_t *elem_data)
345 {
346 uint8_t *tab_elem_data = NULL;
347
348 FF_DYNARRAY_ADD(INT_MAX, elem_size, *tab_ptr, *nb_ptr, {
349 tab_elem_data = (uint8_t *)*tab_ptr + (*nb_ptr) * elem_size;
350 if (elem_data)
351 memcpy(tab_elem_data, elem_data, elem_size);
352 else if (CONFIG_MEMORY_POISONING)
353 memset(tab_elem_data, FF_MEMORY_POISON, elem_size);
354 }, {
355 av_freep(tab_ptr);
356 *nb_ptr = 0;
357 });
358 return tab_elem_data;
359 }
360
361 static void fill16(uint8_t *dst, int len)
362 {
363 uint32_t v = AV_RN16(dst - 2);
364
365 v |= v << 16;
366
367 while (len >= 4) {
368 AV_WN32(dst, v);
369 dst += 4;
370 len -= 4;
371 }
372
373 while (len--) {
374 *dst = dst[-2];
375 dst++;
376 }
377 }
378
379 static void fill24(uint8_t *dst, int len)
380 {
381 #if HAVE_BIGENDIAN
382 uint32_t v = AV_RB24(dst - 3);
383 uint32_t a = v << 8 | v >> 16;
384 uint32_t b = v << 16 | v >> 8;
385 uint32_t c = v << 24 | v;
386 #else
387 uint32_t v = AV_RL24(dst - 3);
388 uint32_t a = v | v << 24;
389 uint32_t b = v >> 8 | v << 16;
390 uint32_t c = v >> 16 | v << 8;
391 #endif
392
393 while (len >= 12) {
394 AV_WN32(dst, a);
395 AV_WN32(dst + 4, b);
396 AV_WN32(dst + 8, c);
397 dst += 12;
398 len -= 12;
399 }
400
401 if (len >= 4) {
402 AV_WN32(dst, a);
403 dst += 4;
404 len -= 4;
405 }
406
407 if (len >= 4) {
408 AV_WN32(dst, b);
409 dst += 4;
410 len -= 4;
411 }
412
413 while (len--) {
414 *dst = dst[-3];
415 dst++;
416 }
417 }
418
419 static void fill32(uint8_t *dst, int len)
420 {
421 uint32_t v = AV_RN32(dst - 4);
422
423 #if HAVE_FAST_64BIT
424 uint64_t v2= v + ((uint64_t)v<<32);
425 while (len >= 32) {
426 AV_WN64(dst , v2);
427 AV_WN64(dst+ 8, v2);
428 AV_WN64(dst+16, v2);
429 AV_WN64(dst+24, v2);
430 dst += 32;
431 len -= 32;
432 }
433 #endif
434
435 while (len >= 4) {
436 AV_WN32(dst, v);
437 dst += 4;
438 len -= 4;
439 }
440
441 while (len--) {
442 *dst = dst[-4];
443 dst++;
444 }
445 }
446
447 void av_memcpy_backptr(uint8_t *dst, int back, int cnt)
448 {
449 const uint8_t *src = &dst[-back];
450 if (!back)
451 return;
452
453 if (back == 1) {
454 memset(dst, *src, cnt);
455 } else if (back == 2) {
456 fill16(dst, cnt);
457 } else if (back == 3) {
458 fill24(dst, cnt);
459 } else if (back == 4) {
460 fill32(dst, cnt);
461 } else {
462 if (cnt >= 16) {
463 int blocklen = back;
464 while (cnt > blocklen) {
465 memcpy(dst, src, blocklen);
466 dst += blocklen;
467 cnt -= blocklen;
468 blocklen <<= 1;
469 }
470 memcpy(dst, src, cnt);
471 return;
472 }
473 if (cnt >= 8) {
474 AV_COPY32U(dst, src);
475 AV_COPY32U(dst + 4, src + 4);
476 src += 8;
477 dst += 8;
478 cnt -= 8;
479 }
480 if (cnt >= 4) {
481 AV_COPY32U(dst, src);
482 src += 4;
483 dst += 4;
484 cnt -= 4;
485 }
486 if (cnt >= 2) {
487 AV_COPY16U(dst, src);
488 src += 2;
489 dst += 2;
490 cnt -= 2;
491 }
492 if (cnt)
493 *dst = *src;
494 }
495 }
496
497 void *av_fast_realloc(void *ptr, unsigned int *size, size_t min_size)
498 {
499 size_t max_size;
500
501 if (min_size <= *size)
502 return ptr;
503
504 max_size = atomic_load_explicit(&max_alloc_size, memory_order_relaxed);
505 /* *size is an unsigned, so the real maximum is <= UINT_MAX. */
506 max_size = FFMIN(max_size, UINT_MAX);
507
508 if (min_size > max_size) {
509 *size = 0;
510 return NULL;
511 }
512
513 min_size = FFMIN(max_size, FFMAX(min_size + min_size / 16 + 32, min_size));
514
515 ptr = av_realloc(ptr, min_size);
516 /* we could set this to the unmodified min_size but this is safer
517 * if the user lost the ptr and uses NULL now
518 */
519 if (!ptr)
520 min_size = 0;
521
522 *size = min_size;
523
524 return ptr;
525 }
526
527 static inline void fast_malloc(void *ptr, unsigned int *size, size_t min_size, int zero_realloc)
528 {
529 size_t max_size;
530 void *val;
531
532 memcpy(&val, ptr, sizeof(val));
533 if (min_size <= *size) {
534 av_assert0(val || !min_size);
535 return;
536 }
537
538 max_size = atomic_load_explicit(&max_alloc_size, memory_order_relaxed);
539 /* *size is an unsigned, so the real maximum is <= UINT_MAX. */
540 max_size = FFMIN(max_size, UINT_MAX);
541
542 if (min_size > max_size) {
543 av_freep(ptr);
544 *size = 0;
545 return;
546 }
547 min_size = FFMIN(max_size, FFMAX(min_size + min_size / 16 + 32, min_size));
548 av_freep(ptr);
549 val = zero_realloc ? av_mallocz(min_size) : av_malloc(min_size);
550 memcpy(ptr, &val, sizeof(val));
551 if (!val)
552 min_size = 0;
553 *size = min_size;
554 return;
555 }
556
557 void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
558 {
559 fast_malloc(ptr, size, min_size, 0);
560 }
561
562 void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
563 {
564 fast_malloc(ptr, size, min_size, 1);
565 }
566
567 int av_size_mult(size_t a, size_t b, size_t *r)
568 {
569 return size_mult(a, b, r);
570 }