2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of FFmpeg.
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
45 #include "libavutil/channel_layout.h"
46 #include "libavutil/lfg.h"
47 #include "libavutil/mem_internal.h"
48 #include "libavutil/thread.h"
53 #include "bytestream.h"
54 #include "codec_internal.h"
62 /* the different Cook versions */
63 #define MONO 0x1000001
64 #define STEREO 0x1000002
65 #define JOINT_STEREO 0x1000003
66 #define MC_COOK 0x2000000
68 #define SUBBAND_SIZE 20
69 #define MAX_SUBPACKETS 5
71 #define QUANT_VLC_BITS 9
72 #define COUPLING_VLC_BITS 6
74 typedef struct cook_gains
{
79 typedef struct COOKSubpacket
{
87 int samples_per_channel
;
88 int log2_numvector_size
;
89 unsigned int channel_mask
;
92 int bits_per_subpacket
;
95 int numvector_size
; // 1 << log2_numvector_size;
97 float mono_previous_buffer1
[1024];
98 float mono_previous_buffer2
[1024];
108 typedef struct cook
{
110 * The following 5 functions provide the lowlevel arithmetic on
111 * the internal audio buffers.
113 void (*scalar_dequant
)(struct cook
*q
, int index
, int quant_index
,
114 int *subband_coef_index
, int *subband_coef_sign
,
117 void (*decouple
)(struct cook
*q
,
121 float *decode_buffer
,
122 float *mlt_buffer1
, float *mlt_buffer2
);
124 void (*imlt_window
)(struct cook
*q
, float *buffer1
,
125 cook_gains
*gains_ptr
, float *previous_buffer
);
127 void (*interpolate
)(struct cook
*q
, float *buffer
,
128 int gain_index
, int gain_index_next
);
130 void (*saturate_output
)(struct cook
*q
, float *out
);
132 AVCodecContext
* avctx
;
133 AudioDSPContext adsp
;
137 int samples_per_channel
;
140 int discarded_packets
;
147 VLC envelope_quant_index
[13];
148 VLC sqvh
[7]; // scalar quantization
150 /* generate tables and related variables */
151 int gain_size_factor
;
152 float gain_table
[31];
156 uint8_t* decoded_bytes_buffer
;
157 DECLARE_ALIGNED(32, float, mono_mdct_output
)[2048];
158 float decode_buffer_1
[1024];
159 float decode_buffer_2
[1024];
160 float decode_buffer_0
[1060]; /* static allocation for joint decode */
162 const float *cplscales
[5];
164 COOKSubpacket subpacket
[MAX_SUBPACKETS
];
167 static float pow2tab
[127];
168 static float rootpow2tab
[127];
170 /*************** init functions ***************/
172 /* table generator */
173 static av_cold
void init_pow2table(void)
175 /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */
177 static const float exp2_tab
[2] = {1, M_SQRT2
};
178 float exp2_val
= powf(2, -63);
179 float root_val
= powf(2, -32);
180 for (i
= -63; i
< 64; i
++) {
183 pow2tab
[63 + i
] = exp2_val
;
184 rootpow2tab
[63 + i
] = root_val
* exp2_tab
[i
& 1];
189 /* table generator */
190 static av_cold
void init_gain_table(COOKContext
*q
)
193 q
->gain_size_factor
= q
->samples_per_channel
/ 8;
194 for (i
= 0; i
< 31; i
++)
195 q
->gain_table
[i
] = pow(pow2tab
[i
+ 48],
196 (1.0 / (double) q
->gain_size_factor
));
199 static av_cold
int build_vlc(VLC
*vlc
, int nb_bits
, const uint8_t counts
[16],
200 const void *syms
, int symbol_size
, int offset
,
203 uint8_t lens
[MAX_COOK_VLC_ENTRIES
];
206 for (int i
= 0; i
< 16; i
++)
207 for (unsigned count
= num
+ counts
[i
]; num
< count
; num
++)
210 return ff_init_vlc_from_lengths(vlc
, nb_bits
, num
, lens
, 1,
211 syms
, symbol_size
, symbol_size
,
215 static av_cold
int init_cook_vlc_tables(COOKContext
*q
)
220 for (i
= 0; i
< 13; i
++) {
221 result
|= build_vlc(&q
->envelope_quant_index
[i
], QUANT_VLC_BITS
,
222 envelope_quant_index_huffcounts
[i
],
223 envelope_quant_index_huffsyms
[i
], 1, -12, q
->avctx
);
225 av_log(q
->avctx
, AV_LOG_DEBUG
, "sqvh VLC init\n");
226 for (i
= 0; i
< 7; i
++) {
227 int sym_size
= 1 + (i
== 3);
228 result
|= build_vlc(&q
->sqvh
[i
], vhvlcsize_tab
[i
],
230 cvh_huffsyms
[i
], sym_size
, 0, q
->avctx
);
233 for (i
= 0; i
< q
->num_subpackets
; i
++) {
234 if (q
->subpacket
[i
].joint_stereo
== 1) {
235 result
|= build_vlc(&q
->subpacket
[i
].channel_coupling
, COUPLING_VLC_BITS
,
236 ccpl_huffcounts
[q
->subpacket
[i
].js_vlc_bits
- 2],
237 ccpl_huffsyms
[q
->subpacket
[i
].js_vlc_bits
- 2], 1,
239 av_log(q
->avctx
, AV_LOG_DEBUG
, "subpacket %i Joint-stereo VLC used.\n", i
);
243 av_log(q
->avctx
, AV_LOG_DEBUG
, "VLC tables initialized.\n");
247 static av_cold
int init_cook_mlt(COOKContext
*q
)
250 int mlt_size
= q
->samples_per_channel
;
252 if (!(q
->mlt_window
= av_malloc_array(mlt_size
, sizeof(*q
->mlt_window
))))
253 return AVERROR(ENOMEM
);
255 /* Initialize the MLT window: simple sine window. */
256 ff_sine_window_init(q
->mlt_window
, mlt_size
);
257 for (j
= 0; j
< mlt_size
; j
++)
258 q
->mlt_window
[j
] *= sqrt(2.0 / q
->samples_per_channel
);
260 /* Initialize the MDCT. */
261 ret
= ff_mdct_init(&q
->mdct_ctx
, av_log2(mlt_size
) + 1, 1, 1.0 / 32768.0);
264 av_log(q
->avctx
, AV_LOG_DEBUG
, "MDCT initialized, order = %d.\n",
265 av_log2(mlt_size
) + 1);
270 static av_cold
void init_cplscales_table(COOKContext
*q
)
273 for (i
= 0; i
< 5; i
++)
274 q
->cplscales
[i
] = cplscales
[i
];
277 /*************** init functions end ***********/
279 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
280 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
283 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
284 * Why? No idea, some checksum/error detection method maybe.
286 * Out buffer size: extra bytes are needed to cope with
287 * padding/misalignment.
288 * Subpackets passed to the decoder can contain two, consecutive
289 * half-subpackets, of identical but arbitrary size.
290 * 1234 1234 1234 1234 extraA extraB
291 * Case 1: AAAA BBBB 0 0
292 * Case 2: AAAA ABBB BB-- 3 3
293 * Case 3: AAAA AABB BBBB 2 2
294 * Case 4: AAAA AAAB BBBB BB-- 1 5
296 * Nice way to waste CPU cycles.
298 * @param inbuffer pointer to byte array of indata
299 * @param out pointer to byte array of outdata
300 * @param bytes number of bytes
302 static inline int decode_bytes(const uint8_t *inbuffer
, uint8_t *out
, int bytes
)
304 static const uint32_t tab
[4] = {
305 AV_BE2NE32C(0x37c511f2u
), AV_BE2NE32C(0xf237c511u
),
306 AV_BE2NE32C(0x11f237c5u
), AV_BE2NE32C(0xc511f237u
),
311 uint32_t *obuf
= (uint32_t *) out
;
312 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
313 * I'm too lazy though, should be something like
314 * for (i = 0; i < bitamount / 64; i++)
315 * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
316 * Buffer alignment needs to be checked. */
318 off
= (intptr_t) inbuffer
& 3;
319 buf
= (const uint32_t *) (inbuffer
- off
);
322 for (i
= 0; i
< bytes
/ 4; i
++)
323 obuf
[i
] = c
^ buf
[i
];
328 static av_cold
int cook_decode_close(AVCodecContext
*avctx
)
331 COOKContext
*q
= avctx
->priv_data
;
332 av_log(avctx
, AV_LOG_DEBUG
, "Deallocating memory.\n");
334 /* Free allocated memory buffers. */
335 av_freep(&q
->mlt_window
);
336 av_freep(&q
->decoded_bytes_buffer
);
338 /* Free the transform. */
339 ff_mdct_end(&q
->mdct_ctx
);
341 /* Free the VLC tables. */
342 for (i
= 0; i
< 13; i
++)
343 ff_free_vlc(&q
->envelope_quant_index
[i
]);
344 for (i
= 0; i
< 7; i
++)
345 ff_free_vlc(&q
->sqvh
[i
]);
346 for (i
= 0; i
< q
->num_subpackets
; i
++)
347 ff_free_vlc(&q
->subpacket
[i
].channel_coupling
);
349 av_log(avctx
, AV_LOG_DEBUG
, "Memory deallocated.\n");
355 * Fill the gain array for the timedomain quantization.
357 * @param gb pointer to the GetBitContext
358 * @param gaininfo array[9] of gain indexes
360 static void decode_gain_info(GetBitContext
*gb
, int *gaininfo
)
364 n
= get_unary(gb
, 0, get_bits_left(gb
)); // amount of elements*2 to update
368 int index
= get_bits(gb
, 3);
369 int gain
= get_bits1(gb
) ? get_bits(gb
, 4) - 7 : -1;
372 gaininfo
[i
++] = gain
;
379 * Create the quant index table needed for the envelope.
381 * @param q pointer to the COOKContext
382 * @param quant_index_table pointer to the array
384 static int decode_envelope(COOKContext
*q
, COOKSubpacket
*p
,
385 int *quant_index_table
)
389 quant_index_table
[0] = get_bits(&q
->gb
, 6) - 6; // This is used later in categorize
391 for (i
= 1; i
< p
->total_subbands
; i
++) {
393 if (i
>= p
->js_subband_start
* 2) {
394 vlc_index
-= p
->js_subband_start
;
401 vlc_index
= 13; // the VLC tables >13 are identical to No. 13
403 j
= get_vlc2(&q
->gb
, q
->envelope_quant_index
[vlc_index
- 1].table
,
405 quant_index_table
[i
] = quant_index_table
[i
- 1] + j
; // differential encoding
406 if (quant_index_table
[i
] > 63 || quant_index_table
[i
] < -63) {
407 av_log(q
->avctx
, AV_LOG_ERROR
,
408 "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
409 quant_index_table
[i
], i
);
410 return AVERROR_INVALIDDATA
;
418 * Calculate the category and category_index vector.
420 * @param q pointer to the COOKContext
421 * @param quant_index_table pointer to the array
422 * @param category pointer to the category array
423 * @param category_index pointer to the category_index array
425 static void categorize(COOKContext
*q
, COOKSubpacket
*p
, const int *quant_index_table
,
426 int *category
, int *category_index
)
428 int exp_idx
, bias
, tmpbias1
, tmpbias2
, bits_left
, num_bits
, index
, v
, i
, j
;
429 int exp_index2
[102] = { 0 };
430 int exp_index1
[102] = { 0 };
432 int tmp_categorize_array
[128 * 2] = { 0 };
433 int tmp_categorize_array1_idx
= p
->numvector_size
;
434 int tmp_categorize_array2_idx
= p
->numvector_size
;
436 bits_left
= p
->bits_per_subpacket
- get_bits_count(&q
->gb
);
438 if (bits_left
> q
->samples_per_channel
)
439 bits_left
= q
->samples_per_channel
+
440 ((bits_left
- q
->samples_per_channel
) * 5) / 8;
445 for (i
= 32; i
> 0; i
= i
/ 2) {
448 for (j
= p
->total_subbands
; j
> 0; j
--) {
449 exp_idx
= av_clip_uintp2((i
- quant_index_table
[index
] + bias
) / 2, 3);
451 num_bits
+= expbits_tab
[exp_idx
];
453 if (num_bits
>= bits_left
- 32)
457 /* Calculate total number of bits. */
459 for (i
= 0; i
< p
->total_subbands
; i
++) {
460 exp_idx
= av_clip_uintp2((bias
- quant_index_table
[i
]) / 2, 3);
461 num_bits
+= expbits_tab
[exp_idx
];
462 exp_index1
[i
] = exp_idx
;
463 exp_index2
[i
] = exp_idx
;
465 tmpbias1
= tmpbias2
= num_bits
;
467 for (j
= 1; j
< p
->numvector_size
; j
++) {
468 if (tmpbias1
+ tmpbias2
> 2 * bits_left
) { /* ---> */
471 for (i
= 0; i
< p
->total_subbands
; i
++) {
472 if (exp_index1
[i
] < 7) {
473 v
= (-2 * exp_index1
[i
]) - quant_index_table
[i
] + bias
;
482 tmp_categorize_array
[tmp_categorize_array1_idx
++] = index
;
483 tmpbias1
-= expbits_tab
[exp_index1
[index
]] -
484 expbits_tab
[exp_index1
[index
] + 1];
489 for (i
= 0; i
< p
->total_subbands
; i
++) {
490 if (exp_index2
[i
] > 0) {
491 v
= (-2 * exp_index2
[i
]) - quant_index_table
[i
] + bias
;
500 tmp_categorize_array
[--tmp_categorize_array2_idx
] = index
;
501 tmpbias2
-= expbits_tab
[exp_index2
[index
]] -
502 expbits_tab
[exp_index2
[index
] - 1];
507 for (i
= 0; i
< p
->total_subbands
; i
++)
508 category
[i
] = exp_index2
[i
];
510 for (i
= 0; i
< p
->numvector_size
- 1; i
++)
511 category_index
[i
] = tmp_categorize_array
[tmp_categorize_array2_idx
++];
516 * Expand the category vector.
518 * @param q pointer to the COOKContext
519 * @param category pointer to the category array
520 * @param category_index pointer to the category_index array
522 static inline void expand_category(COOKContext
*q
, int *category
,
526 for (i
= 0; i
< q
->num_vectors
; i
++)
528 int idx
= category_index
[i
];
529 if (++category
[idx
] >= FF_ARRAY_ELEMS(dither_tab
))
535 * The real requantization of the mltcoefs
537 * @param q pointer to the COOKContext
539 * @param quant_index quantisation index
540 * @param subband_coef_index array of indexes to quant_centroid_tab
541 * @param subband_coef_sign signs of coefficients
542 * @param mlt_p pointer into the mlt buffer
544 static void scalar_dequant_float(COOKContext
*q
, int index
, int quant_index
,
545 int *subband_coef_index
, int *subband_coef_sign
,
551 for (i
= 0; i
< SUBBAND_SIZE
; i
++) {
552 if (subband_coef_index
[i
]) {
553 f1
= quant_centroid_tab
[index
][subband_coef_index
[i
]];
554 if (subband_coef_sign
[i
])
557 /* noise coding if subband_coef_index[i] == 0 */
558 f1
= dither_tab
[index
];
559 if (av_lfg_get(&q
->random_state
) < 0x80000000)
562 mlt_p
[i
] = f1
* rootpow2tab
[quant_index
+ 63];
566 * Unpack the subband_coef_index and subband_coef_sign vectors.
568 * @param q pointer to the COOKContext
569 * @param category pointer to the category array
570 * @param subband_coef_index array of indexes to quant_centroid_tab
571 * @param subband_coef_sign signs of coefficients
573 static int unpack_SQVH(COOKContext
*q
, COOKSubpacket
*p
, int category
,
574 int *subband_coef_index
, int *subband_coef_sign
)
577 int vlc
, vd
, tmp
, result
;
579 vd
= vd_tab
[category
];
581 for (i
= 0; i
< vpr_tab
[category
]; i
++) {
582 vlc
= get_vlc2(&q
->gb
, q
->sqvh
[category
].table
, q
->sqvh
[category
].bits
, 3);
583 if (p
->bits_per_subpacket
< get_bits_count(&q
->gb
)) {
587 for (j
= vd
- 1; j
>= 0; j
--) {
588 tmp
= (vlc
* invradix_tab
[category
]) / 0x100000;
589 subband_coef_index
[vd
* i
+ j
] = vlc
- tmp
* (kmax_tab
[category
] + 1);
592 for (j
= 0; j
< vd
; j
++) {
593 if (subband_coef_index
[i
* vd
+ j
]) {
594 if (get_bits_count(&q
->gb
) < p
->bits_per_subpacket
) {
595 subband_coef_sign
[i
* vd
+ j
] = get_bits1(&q
->gb
);
598 subband_coef_sign
[i
* vd
+ j
] = 0;
601 subband_coef_sign
[i
* vd
+ j
] = 0;
610 * Fill the mlt_buffer with mlt coefficients.
612 * @param q pointer to the COOKContext
613 * @param category pointer to the category array
614 * @param quant_index_table pointer to the array
615 * @param mlt_buffer pointer to mlt coefficients
617 static void decode_vectors(COOKContext
*q
, COOKSubpacket
*p
, int *category
,
618 int *quant_index_table
, float *mlt_buffer
)
620 /* A zero in this table means that the subband coefficient is
621 random noise coded. */
622 int subband_coef_index
[SUBBAND_SIZE
];
623 /* A zero in this table means that the subband coefficient is a
624 positive multiplicator. */
625 int subband_coef_sign
[SUBBAND_SIZE
];
629 for (band
= 0; band
< p
->total_subbands
; band
++) {
630 index
= category
[band
];
631 if (category
[band
] < 7) {
632 if (unpack_SQVH(q
, p
, category
[band
], subband_coef_index
, subband_coef_sign
)) {
634 for (j
= 0; j
< p
->total_subbands
; j
++)
635 category
[band
+ j
] = 7;
639 memset(subband_coef_index
, 0, sizeof(subband_coef_index
));
640 memset(subband_coef_sign
, 0, sizeof(subband_coef_sign
));
642 q
->scalar_dequant(q
, index
, quant_index_table
[band
],
643 subband_coef_index
, subband_coef_sign
,
644 &mlt_buffer
[band
* SUBBAND_SIZE
]);
647 /* FIXME: should this be removed, or moved into loop above? */
648 if (p
->total_subbands
* SUBBAND_SIZE
>= q
->samples_per_channel
)
653 static int mono_decode(COOKContext
*q
, COOKSubpacket
*p
, float *mlt_buffer
)
655 int category_index
[128] = { 0 };
656 int category
[128] = { 0 };
657 int quant_index_table
[102];
660 if ((res
= decode_envelope(q
, p
, quant_index_table
)) < 0)
662 q
->num_vectors
= get_bits(&q
->gb
, p
->log2_numvector_size
);
663 categorize(q
, p
, quant_index_table
, category
, category_index
);
664 expand_category(q
, category
, category_index
);
665 for (i
=0; i
<p
->total_subbands
; i
++) {
667 return AVERROR_INVALIDDATA
;
669 decode_vectors(q
, p
, category
, quant_index_table
, mlt_buffer
);
676 * the actual requantization of the timedomain samples
678 * @param q pointer to the COOKContext
679 * @param buffer pointer to the timedomain buffer
680 * @param gain_index index for the block multiplier
681 * @param gain_index_next index for the next block multiplier
683 static void interpolate_float(COOKContext
*q
, float *buffer
,
684 int gain_index
, int gain_index_next
)
688 fc1
= pow2tab
[gain_index
+ 63];
690 if (gain_index
== gain_index_next
) { // static gain
691 for (i
= 0; i
< q
->gain_size_factor
; i
++)
693 } else { // smooth gain
694 fc2
= q
->gain_table
[15 + (gain_index_next
- gain_index
)];
695 for (i
= 0; i
< q
->gain_size_factor
; i
++) {
703 * Apply transform window, overlap buffers.
705 * @param q pointer to the COOKContext
706 * @param inbuffer pointer to the mltcoefficients
707 * @param gains_ptr current and previous gains
708 * @param previous_buffer pointer to the previous buffer to be used for overlapping
710 static void imlt_window_float(COOKContext
*q
, float *inbuffer
,
711 cook_gains
*gains_ptr
, float *previous_buffer
)
713 const float fc
= pow2tab
[gains_ptr
->previous
[0] + 63];
715 /* The weird thing here, is that the two halves of the time domain
716 * buffer are swapped. Also, the newest data, that we save away for
717 * next frame, has the wrong sign. Hence the subtraction below.
718 * Almost sounds like a complex conjugate/reverse data/FFT effect.
721 /* Apply window and overlap */
722 for (i
= 0; i
< q
->samples_per_channel
; i
++)
723 inbuffer
[i
] = inbuffer
[i
] * fc
* q
->mlt_window
[i
] -
724 previous_buffer
[i
] * q
->mlt_window
[q
->samples_per_channel
- 1 - i
];
728 * The modulated lapped transform, this takes transform coefficients
729 * and transforms them into timedomain samples.
730 * Apply transform window, overlap buffers, apply gain profile
731 * and buffer management.
733 * @param q pointer to the COOKContext
734 * @param inbuffer pointer to the mltcoefficients
735 * @param gains_ptr current and previous gains
736 * @param previous_buffer pointer to the previous buffer to be used for overlapping
738 static void imlt_gain(COOKContext
*q
, float *inbuffer
,
739 cook_gains
*gains_ptr
, float *previous_buffer
)
741 float *buffer0
= q
->mono_mdct_output
;
742 float *buffer1
= q
->mono_mdct_output
+ q
->samples_per_channel
;
745 /* Inverse modified discrete cosine transform */
746 q
->mdct_ctx
.imdct_calc(&q
->mdct_ctx
, q
->mono_mdct_output
, inbuffer
);
748 q
->imlt_window(q
, buffer1
, gains_ptr
, previous_buffer
);
750 /* Apply gain profile */
751 for (i
= 0; i
< 8; i
++)
752 if (gains_ptr
->now
[i
] || gains_ptr
->now
[i
+ 1])
753 q
->interpolate(q
, &buffer1
[q
->gain_size_factor
* i
],
754 gains_ptr
->now
[i
], gains_ptr
->now
[i
+ 1]);
756 /* Save away the current to be previous block. */
757 memcpy(previous_buffer
, buffer0
,
758 q
->samples_per_channel
* sizeof(*previous_buffer
));
763 * function for getting the jointstereo coupling information
765 * @param q pointer to the COOKContext
766 * @param decouple_tab decoupling array
768 static int decouple_info(COOKContext
*q
, COOKSubpacket
*p
, int *decouple_tab
)
771 int vlc
= get_bits1(&q
->gb
);
772 int start
= cplband
[p
->js_subband_start
];
773 int end
= cplband
[p
->subbands
- 1];
774 int length
= end
- start
+ 1;
780 for (i
= 0; i
< length
; i
++)
781 decouple_tab
[start
+ i
] = get_vlc2(&q
->gb
,
782 p
->channel_coupling
.table
,
783 COUPLING_VLC_BITS
, 3);
785 for (i
= 0; i
< length
; i
++) {
786 int v
= get_bits(&q
->gb
, p
->js_vlc_bits
);
787 if (v
== (1<<p
->js_vlc_bits
)-1) {
788 av_log(q
->avctx
, AV_LOG_ERROR
, "decouple value too large\n");
789 return AVERROR_INVALIDDATA
;
791 decouple_tab
[start
+ i
] = v
;
797 * function decouples a pair of signals from a single signal via multiplication.
799 * @param q pointer to the COOKContext
800 * @param subband index of the current subband
801 * @param f1 multiplier for channel 1 extraction
802 * @param f2 multiplier for channel 2 extraction
803 * @param decode_buffer input buffer
804 * @param mlt_buffer1 pointer to left channel mlt coefficients
805 * @param mlt_buffer2 pointer to right channel mlt coefficients
807 static void decouple_float(COOKContext
*q
,
811 float *decode_buffer
,
812 float *mlt_buffer1
, float *mlt_buffer2
)
815 for (j
= 0; j
< SUBBAND_SIZE
; j
++) {
816 tmp_idx
= ((p
->js_subband_start
+ subband
) * SUBBAND_SIZE
) + j
;
817 mlt_buffer1
[SUBBAND_SIZE
* subband
+ j
] = f1
* decode_buffer
[tmp_idx
];
818 mlt_buffer2
[SUBBAND_SIZE
* subband
+ j
] = f2
* decode_buffer
[tmp_idx
];
823 * function for decoding joint stereo data
825 * @param q pointer to the COOKContext
826 * @param mlt_buffer1 pointer to left channel mlt coefficients
827 * @param mlt_buffer2 pointer to right channel mlt coefficients
829 static int joint_decode(COOKContext
*q
, COOKSubpacket
*p
,
830 float *mlt_buffer_left
, float *mlt_buffer_right
)
833 int decouple_tab
[SUBBAND_SIZE
] = { 0 };
834 float *decode_buffer
= q
->decode_buffer_0
;
837 const float *cplscale
;
839 memset(decode_buffer
, 0, sizeof(q
->decode_buffer_0
));
841 /* Make sure the buffers are zeroed out. */
842 memset(mlt_buffer_left
, 0, 1024 * sizeof(*mlt_buffer_left
));
843 memset(mlt_buffer_right
, 0, 1024 * sizeof(*mlt_buffer_right
));
844 if ((res
= decouple_info(q
, p
, decouple_tab
)) < 0)
846 if ((res
= mono_decode(q
, p
, decode_buffer
)) < 0)
848 /* The two channels are stored interleaved in decode_buffer. */
849 for (i
= 0; i
< p
->js_subband_start
; i
++) {
850 for (j
= 0; j
< SUBBAND_SIZE
; j
++) {
851 mlt_buffer_left
[i
* 20 + j
] = decode_buffer
[i
* 40 + j
];
852 mlt_buffer_right
[i
* 20 + j
] = decode_buffer
[i
* 40 + 20 + j
];
856 /* When we reach js_subband_start (the higher frequencies)
857 the coefficients are stored in a coupling scheme. */
858 idx
= (1 << p
->js_vlc_bits
) - 1;
859 for (i
= p
->js_subband_start
; i
< p
->subbands
; i
++) {
860 cpl_tmp
= cplband
[i
];
861 idx
-= decouple_tab
[cpl_tmp
];
862 cplscale
= q
->cplscales
[p
->js_vlc_bits
- 2]; // choose decoupler table
863 f1
= cplscale
[decouple_tab
[cpl_tmp
] + 1];
865 q
->decouple(q
, p
, i
, f1
, f2
, decode_buffer
,
866 mlt_buffer_left
, mlt_buffer_right
);
867 idx
= (1 << p
->js_vlc_bits
) - 1;
874 * First part of subpacket decoding:
875 * decode raw stream bytes and read gain info.
877 * @param q pointer to the COOKContext
878 * @param inbuffer pointer to raw stream data
879 * @param gains_ptr array of current/prev gain pointers
881 static inline void decode_bytes_and_gain(COOKContext
*q
, COOKSubpacket
*p
,
882 const uint8_t *inbuffer
,
883 cook_gains
*gains_ptr
)
887 offset
= decode_bytes(inbuffer
, q
->decoded_bytes_buffer
,
888 p
->bits_per_subpacket
/ 8);
889 init_get_bits(&q
->gb
, q
->decoded_bytes_buffer
+ offset
,
890 p
->bits_per_subpacket
);
891 decode_gain_info(&q
->gb
, gains_ptr
->now
);
893 /* Swap current and previous gains */
894 FFSWAP(int *, gains_ptr
->now
, gains_ptr
->previous
);
898 * Saturate the output signal and interleave.
900 * @param q pointer to the COOKContext
901 * @param out pointer to the output vector
903 static void saturate_output_float(COOKContext
*q
, float *out
)
905 q
->adsp
.vector_clipf(out
, q
->mono_mdct_output
+ q
->samples_per_channel
,
906 FFALIGN(q
->samples_per_channel
, 8), -1.0f
, 1.0f
);
911 * Final part of subpacket decoding:
912 * Apply modulated lapped transform, gain compensation,
913 * clip and convert to integer.
915 * @param q pointer to the COOKContext
916 * @param decode_buffer pointer to the mlt coefficients
917 * @param gains_ptr array of current/prev gain pointers
918 * @param previous_buffer pointer to the previous buffer to be used for overlapping
919 * @param out pointer to the output buffer
921 static inline void mlt_compensate_output(COOKContext
*q
, float *decode_buffer
,
922 cook_gains
*gains_ptr
, float *previous_buffer
,
925 imlt_gain(q
, decode_buffer
, gains_ptr
, previous_buffer
);
927 q
->saturate_output(q
, out
);
932 * Cook subpacket decoding. This function returns one decoded subpacket,
933 * usually 1024 samples per channel.
935 * @param q pointer to the COOKContext
936 * @param inbuffer pointer to the inbuffer
937 * @param outbuffer pointer to the outbuffer
939 static int decode_subpacket(COOKContext
*q
, COOKSubpacket
*p
,
940 const uint8_t *inbuffer
, float **outbuffer
)
942 int sub_packet_size
= p
->size
;
945 memset(q
->decode_buffer_1
, 0, sizeof(q
->decode_buffer_1
));
946 decode_bytes_and_gain(q
, p
, inbuffer
, &p
->gains1
);
948 if (p
->joint_stereo
) {
949 if ((res
= joint_decode(q
, p
, q
->decode_buffer_1
, q
->decode_buffer_2
)) < 0)
952 if ((res
= mono_decode(q
, p
, q
->decode_buffer_1
)) < 0)
955 if (p
->num_channels
== 2) {
956 decode_bytes_and_gain(q
, p
, inbuffer
+ sub_packet_size
/ 2, &p
->gains2
);
957 if ((res
= mono_decode(q
, p
, q
->decode_buffer_2
)) < 0)
962 mlt_compensate_output(q
, q
->decode_buffer_1
, &p
->gains1
,
963 p
->mono_previous_buffer1
,
964 outbuffer
? outbuffer
[p
->ch_idx
] : NULL
);
966 if (p
->num_channels
== 2) {
968 mlt_compensate_output(q
, q
->decode_buffer_2
, &p
->gains1
,
969 p
->mono_previous_buffer2
,
970 outbuffer
? outbuffer
[p
->ch_idx
+ 1] : NULL
);
972 mlt_compensate_output(q
, q
->decode_buffer_2
, &p
->gains2
,
973 p
->mono_previous_buffer2
,
974 outbuffer
? outbuffer
[p
->ch_idx
+ 1] : NULL
);
981 static int cook_decode_frame(AVCodecContext
*avctx
, AVFrame
*frame
,
982 int *got_frame_ptr
, AVPacket
*avpkt
)
984 const uint8_t *buf
= avpkt
->data
;
985 int buf_size
= avpkt
->size
;
986 COOKContext
*q
= avctx
->priv_data
;
987 float **samples
= NULL
;
992 if (buf_size
< avctx
->block_align
)
995 /* get output buffer */
996 if (q
->discarded_packets
>= 2) {
997 frame
->nb_samples
= q
->samples_per_channel
;
998 if ((ret
= ff_get_buffer(avctx
, frame
, 0)) < 0)
1000 samples
= (float **)frame
->extended_data
;
1003 /* estimate subpacket sizes */
1004 q
->subpacket
[0].size
= avctx
->block_align
;
1006 for (i
= 1; i
< q
->num_subpackets
; i
++) {
1007 q
->subpacket
[i
].size
= 2 * buf
[avctx
->block_align
- q
->num_subpackets
+ i
];
1008 q
->subpacket
[0].size
-= q
->subpacket
[i
].size
+ 1;
1009 if (q
->subpacket
[0].size
< 0) {
1010 av_log(avctx
, AV_LOG_DEBUG
,
1011 "frame subpacket size total > avctx->block_align!\n");
1012 return AVERROR_INVALIDDATA
;
1016 /* decode supbackets */
1017 for (i
= 0; i
< q
->num_subpackets
; i
++) {
1018 q
->subpacket
[i
].bits_per_subpacket
= (q
->subpacket
[i
].size
* 8) >>
1019 q
->subpacket
[i
].bits_per_subpdiv
;
1020 q
->subpacket
[i
].ch_idx
= chidx
;
1021 av_log(avctx
, AV_LOG_DEBUG
,
1022 "subpacket[%i] size %i js %i %i block_align %i\n",
1023 i
, q
->subpacket
[i
].size
, q
->subpacket
[i
].joint_stereo
, offset
,
1024 avctx
->block_align
);
1026 if ((ret
= decode_subpacket(q
, &q
->subpacket
[i
], buf
+ offset
, samples
)) < 0)
1028 offset
+= q
->subpacket
[i
].size
;
1029 chidx
+= q
->subpacket
[i
].num_channels
;
1030 av_log(avctx
, AV_LOG_DEBUG
, "subpacket[%i] %i %i\n",
1031 i
, q
->subpacket
[i
].size
* 8, get_bits_count(&q
->gb
));
1034 /* Discard the first two frames: no valid audio. */
1035 if (q
->discarded_packets
< 2) {
1036 q
->discarded_packets
++;
1038 return avctx
->block_align
;
1043 return avctx
->block_align
;
1046 static void dump_cook_context(COOKContext
*q
)
1049 #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1050 ff_dlog(q
->avctx
, "COOKextradata\n");
1051 ff_dlog(q
->avctx
, "cookversion=%x\n", q
->subpacket
[0].cookversion
);
1052 if (q
->subpacket
[0].cookversion
> STEREO
) {
1053 PRINT("js_subband_start", q
->subpacket
[0].js_subband_start
);
1054 PRINT("js_vlc_bits", q
->subpacket
[0].js_vlc_bits
);
1056 ff_dlog(q
->avctx
, "COOKContext\n");
1057 PRINT("nb_channels", q
->avctx
->ch_layout
.nb_channels
);
1058 PRINT("bit_rate", (int)q
->avctx
->bit_rate
);
1059 PRINT("sample_rate", q
->avctx
->sample_rate
);
1060 PRINT("samples_per_channel", q
->subpacket
[0].samples_per_channel
);
1061 PRINT("subbands", q
->subpacket
[0].subbands
);
1062 PRINT("js_subband_start", q
->subpacket
[0].js_subband_start
);
1063 PRINT("log2_numvector_size", q
->subpacket
[0].log2_numvector_size
);
1064 PRINT("numvector_size", q
->subpacket
[0].numvector_size
);
1065 PRINT("total_subbands", q
->subpacket
[0].total_subbands
);
1069 * Cook initialization
1071 * @param avctx pointer to the AVCodecContext
1073 static av_cold
int cook_decode_init(AVCodecContext
*avctx
)
1075 static AVOnce init_static_once
= AV_ONCE_INIT
;
1076 COOKContext
*q
= avctx
->priv_data
;
1079 unsigned int channel_mask
= 0;
1080 int samples_per_frame
= 0;
1082 int channels
= avctx
->ch_layout
.nb_channels
;
1086 /* Take care of the codec specific extradata. */
1087 if (avctx
->extradata_size
< 8) {
1088 av_log(avctx
, AV_LOG_ERROR
, "Necessary extradata missing!\n");
1089 return AVERROR_INVALIDDATA
;
1091 av_log(avctx
, AV_LOG_DEBUG
, "codecdata_length=%d\n", avctx
->extradata_size
);
1093 bytestream2_init(&gb
, avctx
->extradata
, avctx
->extradata_size
);
1095 /* Take data from the AVCodecContext (RM container). */
1097 av_log(avctx
, AV_LOG_ERROR
, "Invalid number of channels\n");
1098 return AVERROR_INVALIDDATA
;
1101 if (avctx
->block_align
>= INT_MAX
/ 8)
1102 return AVERROR(EINVAL
);
1104 /* Initialize RNG. */
1105 av_lfg_init(&q
->random_state
, 0);
1107 ff_audiodsp_init(&q
->adsp
);
1109 while (bytestream2_get_bytes_left(&gb
)) {
1110 if (s
>= FFMIN(MAX_SUBPACKETS
, avctx
->block_align
)) {
1111 avpriv_request_sample(avctx
, "subpackets > %d", FFMIN(MAX_SUBPACKETS
, avctx
->block_align
));
1112 return AVERROR_PATCHWELCOME
;
1114 /* 8 for mono, 16 for stereo, ? for multichannel
1115 Swap to right endianness so we don't need to care later on. */
1116 q
->subpacket
[s
].cookversion
= bytestream2_get_be32(&gb
);
1117 samples_per_frame
= bytestream2_get_be16(&gb
);
1118 q
->subpacket
[s
].subbands
= bytestream2_get_be16(&gb
);
1119 bytestream2_get_be32(&gb
); // Unknown unused
1120 q
->subpacket
[s
].js_subband_start
= bytestream2_get_be16(&gb
);
1121 if (q
->subpacket
[s
].js_subband_start
>= 51) {
1122 av_log(avctx
, AV_LOG_ERROR
, "js_subband_start %d is too large\n", q
->subpacket
[s
].js_subband_start
);
1123 return AVERROR_INVALIDDATA
;
1125 q
->subpacket
[s
].js_vlc_bits
= bytestream2_get_be16(&gb
);
1127 /* Initialize extradata related variables. */
1128 q
->subpacket
[s
].samples_per_channel
= samples_per_frame
/ channels
;
1129 q
->subpacket
[s
].bits_per_subpacket
= avctx
->block_align
* 8;
1131 /* Initialize default data states. */
1132 q
->subpacket
[s
].log2_numvector_size
= 5;
1133 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
;
1134 q
->subpacket
[s
].num_channels
= 1;
1136 /* Initialize version-dependent variables */
1138 av_log(avctx
, AV_LOG_DEBUG
, "subpacket[%i].cookversion=%x\n", s
,
1139 q
->subpacket
[s
].cookversion
);
1140 q
->subpacket
[s
].joint_stereo
= 0;
1141 switch (q
->subpacket
[s
].cookversion
) {
1143 if (channels
!= 1) {
1144 avpriv_request_sample(avctx
, "Container channels != 1");
1145 return AVERROR_PATCHWELCOME
;
1147 av_log(avctx
, AV_LOG_DEBUG
, "MONO\n");
1150 if (channels
!= 1) {
1151 q
->subpacket
[s
].bits_per_subpdiv
= 1;
1152 q
->subpacket
[s
].num_channels
= 2;
1154 av_log(avctx
, AV_LOG_DEBUG
, "STEREO\n");
1157 if (channels
!= 2) {
1158 avpriv_request_sample(avctx
, "Container channels != 2");
1159 return AVERROR_PATCHWELCOME
;
1161 av_log(avctx
, AV_LOG_DEBUG
, "JOINT_STEREO\n");
1162 if (avctx
->extradata_size
>= 16) {
1163 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
+
1164 q
->subpacket
[s
].js_subband_start
;
1165 q
->subpacket
[s
].joint_stereo
= 1;
1166 q
->subpacket
[s
].num_channels
= 2;
1168 if (q
->subpacket
[s
].samples_per_channel
> 256) {
1169 q
->subpacket
[s
].log2_numvector_size
= 6;
1171 if (q
->subpacket
[s
].samples_per_channel
> 512) {
1172 q
->subpacket
[s
].log2_numvector_size
= 7;
1176 av_log(avctx
, AV_LOG_DEBUG
, "MULTI_CHANNEL\n");
1177 channel_mask
|= q
->subpacket
[s
].channel_mask
= bytestream2_get_be32(&gb
);
1179 if (av_popcount64(q
->subpacket
[s
].channel_mask
) > 1) {
1180 q
->subpacket
[s
].total_subbands
= q
->subpacket
[s
].subbands
+
1181 q
->subpacket
[s
].js_subband_start
;
1182 q
->subpacket
[s
].joint_stereo
= 1;
1183 q
->subpacket
[s
].num_channels
= 2;
1184 q
->subpacket
[s
].samples_per_channel
= samples_per_frame
>> 1;
1186 if (q
->subpacket
[s
].samples_per_channel
> 256) {
1187 q
->subpacket
[s
].log2_numvector_size
= 6;
1189 if (q
->subpacket
[s
].samples_per_channel
> 512) {
1190 q
->subpacket
[s
].log2_numvector_size
= 7;
1193 q
->subpacket
[s
].samples_per_channel
= samples_per_frame
;
1197 avpriv_request_sample(avctx
, "Cook version %d",
1198 q
->subpacket
[s
].cookversion
);
1199 return AVERROR_PATCHWELCOME
;
1202 if (s
> 1 && q
->subpacket
[s
].samples_per_channel
!= q
->samples_per_channel
) {
1203 av_log(avctx
, AV_LOG_ERROR
, "different number of samples per channel!\n");
1204 return AVERROR_INVALIDDATA
;
1206 q
->samples_per_channel
= q
->subpacket
[0].samples_per_channel
;
1209 /* Initialize variable relations */
1210 q
->subpacket
[s
].numvector_size
= (1 << q
->subpacket
[s
].log2_numvector_size
);
1212 /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1213 if (q
->subpacket
[s
].total_subbands
> 53) {
1214 avpriv_request_sample(avctx
, "total_subbands > 53");
1215 return AVERROR_PATCHWELCOME
;
1218 if ((q
->subpacket
[s
].js_vlc_bits
> 6) ||
1219 (q
->subpacket
[s
].js_vlc_bits
< 2 * q
->subpacket
[s
].joint_stereo
)) {
1220 av_log(avctx
, AV_LOG_ERROR
, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1221 q
->subpacket
[s
].js_vlc_bits
, 2 * q
->subpacket
[s
].joint_stereo
);
1222 return AVERROR_INVALIDDATA
;
1225 if (q
->subpacket
[s
].subbands
> 50) {
1226 avpriv_request_sample(avctx
, "subbands > 50");
1227 return AVERROR_PATCHWELCOME
;
1229 if (q
->subpacket
[s
].subbands
== 0) {
1230 avpriv_request_sample(avctx
, "subbands = 0");
1231 return AVERROR_PATCHWELCOME
;
1233 q
->subpacket
[s
].gains1
.now
= q
->subpacket
[s
].gain_1
;
1234 q
->subpacket
[s
].gains1
.previous
= q
->subpacket
[s
].gain_2
;
1235 q
->subpacket
[s
].gains2
.now
= q
->subpacket
[s
].gain_3
;
1236 q
->subpacket
[s
].gains2
.previous
= q
->subpacket
[s
].gain_4
;
1238 if (q
->num_subpackets
+ q
->subpacket
[s
].num_channels
> channels
) {
1239 av_log(avctx
, AV_LOG_ERROR
, "Too many subpackets %d for channels %d\n", q
->num_subpackets
, channels
);
1240 return AVERROR_INVALIDDATA
;
1243 q
->num_subpackets
++;
1247 /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1248 if (q
->samples_per_channel
!= 256 && q
->samples_per_channel
!= 512 &&
1249 q
->samples_per_channel
!= 1024) {
1250 avpriv_request_sample(avctx
, "samples_per_channel = %d",
1251 q
->samples_per_channel
);
1252 return AVERROR_PATCHWELCOME
;
1255 /* Generate tables */
1256 ff_thread_once(&init_static_once
, init_pow2table
);
1258 init_cplscales_table(q
);
1260 if ((ret
= init_cook_vlc_tables(q
)))
1263 /* Pad the databuffer with:
1264 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1265 AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1266 q
->decoded_bytes_buffer
=
1267 av_mallocz(avctx
->block_align
1268 + DECODE_BYTES_PAD1(avctx
->block_align
)
1269 + AV_INPUT_BUFFER_PADDING_SIZE
);
1270 if (!q
->decoded_bytes_buffer
)
1271 return AVERROR(ENOMEM
);
1273 /* Initialize transform. */
1274 if ((ret
= init_cook_mlt(q
)))
1277 /* Initialize COOK signal arithmetic handling */
1279 q
->scalar_dequant
= scalar_dequant_float
;
1280 q
->decouple
= decouple_float
;
1281 q
->imlt_window
= imlt_window_float
;
1282 q
->interpolate
= interpolate_float
;
1283 q
->saturate_output
= saturate_output_float
;
1286 avctx
->sample_fmt
= AV_SAMPLE_FMT_FLTP
;
1287 av_channel_layout_uninit(&avctx
->ch_layout
);
1289 av_channel_layout_from_mask(&avctx
->ch_layout
, channel_mask
);
1291 av_channel_layout_default(&avctx
->ch_layout
, channels
);
1294 dump_cook_context(q
);
1299 const FFCodec ff_cook_decoder
= {
1301 .p
.long_name
= NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1302 .p
.type
= AVMEDIA_TYPE_AUDIO
,
1303 .p
.id
= AV_CODEC_ID_COOK
,
1304 .priv_data_size
= sizeof(COOKContext
),
1305 .init
= cook_decode_init
,
1306 .close
= cook_decode_close
,
1307 FF_CODEC_DECODE_CB(cook_decode_frame
),
1308 .p
.capabilities
= AV_CODEC_CAP_DR1
,
1309 .p
.sample_fmts
= (const enum AVSampleFormat
[]) { AV_SAMPLE_FMT_FLTP
,
1310 AV_SAMPLE_FMT_NONE
},
1311 .caps_internal
= FF_CODEC_CAP_INIT_THREADSAFE
| FF_CODEC_CAP_INIT_CLEANUP
,