2 * SIPR / ACELP.NET decoder
4 * Copyright (c) 2008 Vladimir Voroshilov
5 * Copyright (c) 2009 Vitor Sessak
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
28 #include "libavutil/channel_layout.h"
29 #include "libavutil/float_dsp.h"
30 #include "libavutil/mathematics.h"
32 #define BITSTREAM_READER_LE
34 #include "codec_internal.h"
38 #include "acelp_vectors.h"
39 #include "acelp_pitch_delay.h"
40 #include "acelp_filters.h"
41 #include "celp_filters.h"
43 #define MAX_SUBFRAME_COUNT 5
48 typedef struct SiprModeParam
{
49 const char *mode_name
;
50 uint16_t bits_per_frame
;
51 uint8_t subframe_count
;
52 uint8_t frames_per_packet
;
53 float pitch_sharp_factor
;
55 /* bitstream parameters */
56 uint8_t number_of_fc_indexes
;
57 uint8_t ma_predictor_bits
; ///< size in bits of the switched MA predictor
59 /** size in bits of the i-th stage vector of quantizer */
60 uint8_t vq_indexes_bits
[5];
62 /** size in bits of the adaptive-codebook index for every subframe */
63 uint8_t pitch_delay_bits
[5];
65 uint8_t gp_index_bits
;
66 uint8_t fc_index_bits
[10]; ///< size in bits of the fixed codebook indexes
67 uint8_t gc_index_bits
; ///< size in bits of the gain codebook indexes
70 static const SiprModeParam modes
[MODE_COUNT
] = {
73 .bits_per_frame
= 160,
74 .subframe_count
= SUBFRAME_COUNT_16k
,
75 .frames_per_packet
= 1,
76 .pitch_sharp_factor
= 0.00,
78 .number_of_fc_indexes
= 10,
79 .ma_predictor_bits
= 1,
80 .vq_indexes_bits
= {7, 8, 7, 7, 7},
81 .pitch_delay_bits
= {9, 6},
83 .fc_index_bits
= {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
89 .bits_per_frame
= 152,
91 .frames_per_packet
= 1,
92 .pitch_sharp_factor
= 0.8,
94 .number_of_fc_indexes
= 3,
95 .ma_predictor_bits
= 0,
96 .vq_indexes_bits
= {6, 7, 7, 7, 5},
97 .pitch_delay_bits
= {8, 5, 5},
99 .fc_index_bits
= {9, 9, 9},
105 .bits_per_frame
= 232,
107 .frames_per_packet
= 2,
108 .pitch_sharp_factor
= 0.8,
110 .number_of_fc_indexes
= 3,
111 .ma_predictor_bits
= 0,
112 .vq_indexes_bits
= {6, 7, 7, 7, 5},
113 .pitch_delay_bits
= {8, 5, 5},
115 .fc_index_bits
= {5, 5, 5},
121 .bits_per_frame
= 296,
123 .frames_per_packet
= 2,
124 .pitch_sharp_factor
= 0.85,
126 .number_of_fc_indexes
= 1,
127 .ma_predictor_bits
= 0,
128 .vq_indexes_bits
= {6, 7, 7, 7, 5},
129 .pitch_delay_bits
= {8, 5, 8, 5, 5},
131 .fc_index_bits
= {10},
136 const float ff_pow_0_5
[] = {
137 1.0/(1 << 1), 1.0/(1 << 2), 1.0/(1 << 3), 1.0/(1 << 4),
138 1.0/(1 << 5), 1.0/(1 << 6), 1.0/(1 << 7), 1.0/(1 << 8),
139 1.0/(1 << 9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
140 1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
143 static void dequant(float *out
, const int *idx
, const float * const cbs
[])
149 for (i
= 0; i
< num_vec
; i
++)
150 memcpy(out
+ stride
*i
, cbs
[i
] + stride
*idx
[i
], stride
*sizeof(float));
154 static void lsf_decode_fp(float *lsfnew
, float *lsf_history
,
155 const SiprParameters
*parm
)
158 float lsf_tmp
[LP_FILTER_ORDER
];
160 dequant(lsf_tmp
, parm
->vq_indexes
, lsf_codebooks
);
162 for (i
= 0; i
< LP_FILTER_ORDER
; i
++)
163 lsfnew
[i
] = lsf_history
[i
] * 0.33 + lsf_tmp
[i
] + mean_lsf
[i
];
165 ff_sort_nearly_sorted_floats(lsfnew
, LP_FILTER_ORDER
- 1);
167 /* Note that a minimum distance is not enforced between the last value and
168 the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
169 ff_set_min_dist_lsf(lsfnew
, LSFQ_DIFF_MIN
, LP_FILTER_ORDER
- 1);
170 lsfnew
[9] = FFMIN(lsfnew
[LP_FILTER_ORDER
- 1], 1.3 * M_PI
);
172 memcpy(lsf_history
, lsf_tmp
, LP_FILTER_ORDER
* sizeof(*lsf_history
));
174 for (i
= 0; i
< LP_FILTER_ORDER
- 1; i
++)
175 lsfnew
[i
] = cos(lsfnew
[i
]);
176 lsfnew
[LP_FILTER_ORDER
- 1] *= 6.153848 / M_PI
;
179 /** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
180 static void pitch_sharpening(int pitch_lag_int
, float beta
,
185 for (i
= pitch_lag_int
; i
< SUBFR_SIZE
; i
++)
186 fixed_vector
[i
] += beta
* fixed_vector
[i
- pitch_lag_int
];
190 * Extract decoding parameters from the input bitstream.
191 * @param parms parameters structure
192 * @param pgb pointer to initialized GetBitContext structure
194 static void decode_parameters(SiprParameters
* parms
, GetBitContext
*pgb
,
195 const SiprModeParam
*p
)
199 if (p
->ma_predictor_bits
)
200 parms
->ma_pred_switch
= get_bits(pgb
, p
->ma_predictor_bits
);
202 for (i
= 0; i
< 5; i
++)
203 parms
->vq_indexes
[i
] = get_bits(pgb
, p
->vq_indexes_bits
[i
]);
205 for (i
= 0; i
< p
->subframe_count
; i
++) {
206 parms
->pitch_delay
[i
] = get_bits(pgb
, p
->pitch_delay_bits
[i
]);
207 if (p
->gp_index_bits
)
208 parms
->gp_index
[i
] = get_bits(pgb
, p
->gp_index_bits
);
210 for (j
= 0; j
< p
->number_of_fc_indexes
; j
++)
211 parms
->fc_indexes
[i
][j
] = get_bits(pgb
, p
->fc_index_bits
[j
]);
213 parms
->gc_index
[i
] = get_bits(pgb
, p
->gc_index_bits
);
217 static void sipr_decode_lp(float *lsfnew
, const float *lsfold
, float *Az
,
220 double lsfint
[LP_FILTER_ORDER
];
222 float t
, t0
= 1.0 / num_subfr
;
225 for (i
= 0; i
< num_subfr
; i
++) {
226 for (j
= 0; j
< LP_FILTER_ORDER
; j
++)
227 lsfint
[j
] = lsfold
[j
] * (1 - t
) + t
* lsfnew
[j
];
229 ff_amrwb_lsp2lpc(lsfint
, Az
, LP_FILTER_ORDER
);
230 Az
+= LP_FILTER_ORDER
;
236 * Evaluate the adaptive impulse response.
238 static void eval_ir(const float *Az
, int pitch_lag
, float *freq
,
239 float pitch_sharp_factor
)
241 float tmp1
[SUBFR_SIZE
+1], tmp2
[LP_FILTER_ORDER
+1];
245 for (i
= 0; i
< LP_FILTER_ORDER
; i
++) {
246 tmp1
[i
+1] = Az
[i
] * ff_pow_0_55
[i
];
247 tmp2
[i
] = Az
[i
] * ff_pow_0_7
[i
];
249 memset(tmp1
+ 11, 0, 37 * sizeof(float));
251 ff_celp_lp_synthesis_filterf(freq
, tmp2
, tmp1
, SUBFR_SIZE
,
254 pitch_sharpening(pitch_lag
, pitch_sharp_factor
, freq
);
258 * Evaluate the convolution of a vector with a sparse vector.
260 static void convolute_with_sparse(float *out
, const AMRFixed
*pulses
,
261 const float *shape
, int length
)
265 memset(out
, 0, length
*sizeof(float));
266 for (i
= 0; i
< pulses
->n
; i
++)
267 for (j
= pulses
->x
[i
]; j
< length
; j
++)
268 out
[j
] += pulses
->y
[i
] * shape
[j
- pulses
->x
[i
]];
272 * Apply postfilter, very similar to AMR one.
274 static void postfilter_5k0(SiprContext
*ctx
, const float *lpc
, float *samples
)
276 float buf
[SUBFR_SIZE
+ LP_FILTER_ORDER
];
277 float *pole_out
= buf
+ LP_FILTER_ORDER
;
278 float lpc_n
[LP_FILTER_ORDER
];
279 float lpc_d
[LP_FILTER_ORDER
];
282 for (i
= 0; i
< LP_FILTER_ORDER
; i
++) {
283 lpc_d
[i
] = lpc
[i
] * ff_pow_0_75
[i
];
284 lpc_n
[i
] = lpc
[i
] * ff_pow_0_5
[i
];
287 memcpy(pole_out
- LP_FILTER_ORDER
, ctx
->postfilter_mem
,
288 LP_FILTER_ORDER
*sizeof(float));
290 ff_celp_lp_synthesis_filterf(pole_out
, lpc_d
, samples
, SUBFR_SIZE
,
293 memcpy(ctx
->postfilter_mem
, pole_out
+ SUBFR_SIZE
- LP_FILTER_ORDER
,
294 LP_FILTER_ORDER
*sizeof(float));
296 ff_tilt_compensation(&ctx
->tilt_mem
, 0.4, pole_out
, SUBFR_SIZE
);
298 memcpy(pole_out
- LP_FILTER_ORDER
, ctx
->postfilter_mem5k0
,
299 LP_FILTER_ORDER
*sizeof(*pole_out
));
301 memcpy(ctx
->postfilter_mem5k0
, pole_out
+ SUBFR_SIZE
- LP_FILTER_ORDER
,
302 LP_FILTER_ORDER
*sizeof(*pole_out
));
304 ff_celp_lp_zero_synthesis_filterf(samples
, lpc_n
, pole_out
, SUBFR_SIZE
,
309 static void decode_fixed_sparse(AMRFixed
*fixed_sparse
, const int16_t *pulses
,
310 SiprMode mode
, int low_gain
)
316 for (i
= 0; i
< 3; i
++) {
317 fixed_sparse
->x
[i
] = 3 * (pulses
[i
] & 0xf) + i
;
318 fixed_sparse
->y
[i
] = pulses
[i
] & 0x10 ? -1 : 1;
323 for (i
= 0; i
< 3; i
++) {
324 fixed_sparse
->x
[2*i
] = 3 * ((pulses
[i
] >> 4) & 0xf) + i
;
325 fixed_sparse
->x
[2*i
+ 1] = 3 * ( pulses
[i
] & 0xf) + i
;
327 fixed_sparse
->y
[2*i
] = (pulses
[i
] & 0x100) ? -1.0: 1.0;
329 fixed_sparse
->y
[2*i
+ 1] =
330 (fixed_sparse
->x
[2*i
+ 1] < fixed_sparse
->x
[2*i
]) ?
331 -fixed_sparse
->y
[2*i
] : fixed_sparse
->y
[2*i
];
339 int offset
= (pulses
[0] & 0x200) ? 2 : 0;
342 for (i
= 0; i
< 3; i
++) {
343 int index
= (val
& 0x7) * 6 + 4 - i
*2;
345 fixed_sparse
->y
[i
] = (offset
+ index
) & 0x3 ? -1 : 1;
346 fixed_sparse
->x
[i
] = index
;
352 int pulse_subset
= (pulses
[0] >> 8) & 1;
354 fixed_sparse
->x
[0] = ((pulses
[0] >> 4) & 15) * 3 + pulse_subset
;
355 fixed_sparse
->x
[1] = ( pulses
[0] & 15) * 3 + pulse_subset
+ 1;
357 fixed_sparse
->y
[0] = pulses
[0] & 0x200 ? -1 : 1;
358 fixed_sparse
->y
[1] = -fixed_sparse
->y
[0];
365 static void decode_frame(SiprContext
*ctx
, SiprParameters
*params
,
369 int subframe_count
= modes
[ctx
->mode
].subframe_count
;
370 int frame_size
= subframe_count
* SUBFR_SIZE
;
371 float Az
[LP_FILTER_ORDER
* MAX_SUBFRAME_COUNT
];
373 float ir_buf
[SUBFR_SIZE
+ LP_FILTER_ORDER
];
374 float lsf_new
[LP_FILTER_ORDER
];
375 float *impulse_response
= ir_buf
+ LP_FILTER_ORDER
;
376 float *synth
= ctx
->synth_buf
+ 16; // 16 instead of LP_FILTER_ORDER for
381 memset(ir_buf
, 0, LP_FILTER_ORDER
* sizeof(float));
382 lsf_decode_fp(lsf_new
, ctx
->lsf_history
, params
);
384 sipr_decode_lp(lsf_new
, ctx
->lsp_history
, Az
, subframe_count
);
386 memcpy(ctx
->lsp_history
, lsf_new
, LP_FILTER_ORDER
* sizeof(float));
388 excitation
= ctx
->excitation
+ PITCH_DELAY_MAX
+ L_INTERPOL
;
390 for (i
= 0; i
< subframe_count
; i
++) {
391 float *pAz
= Az
+ i
*LP_FILTER_ORDER
;
392 float fixed_vector
[SUBFR_SIZE
];
394 float pitch_gain
, gain_code
, avg_energy
;
396 ff_decode_pitch_lag(&T0
, &T0_frac
, params
->pitch_delay
[i
], t0_first
, i
,
397 ctx
->mode
== MODE_5k0
, 6);
399 if (i
== 0 || (i
== 2 && ctx
->mode
== MODE_5k0
))
402 ff_acelp_interpolatef(excitation
, excitation
- T0
+ (T0_frac
<= 0),
404 2 * ((2 + T0_frac
)%3 + 1), LP_FILTER_ORDER
,
407 decode_fixed_sparse(&fixed_cb
, params
->fc_indexes
[i
], ctx
->mode
,
408 ctx
->past_pitch_gain
< 0.8);
410 eval_ir(pAz
, T0
, impulse_response
, modes
[ctx
->mode
].pitch_sharp_factor
);
412 convolute_with_sparse(fixed_vector
, &fixed_cb
, impulse_response
,
415 avg_energy
= (0.01 + avpriv_scalarproduct_float_c(fixed_vector
,
420 ctx
->past_pitch_gain
= pitch_gain
= gain_cb
[params
->gc_index
[i
]][0];
422 gain_code
= ff_amr_set_fixed_gain(gain_cb
[params
->gc_index
[i
]][1],
423 avg_energy
, ctx
->energy_history
,
424 34 - 15.0/(0.05*M_LN10
/M_LN2
),
427 ff_weighted_vector_sumf(excitation
, excitation
, fixed_vector
,
428 pitch_gain
, gain_code
, SUBFR_SIZE
);
430 pitch_gain
*= 0.5 * pitch_gain
;
431 pitch_gain
= FFMIN(pitch_gain
, 0.4);
433 ctx
->gain_mem
= 0.7 * ctx
->gain_mem
+ 0.3 * pitch_gain
;
434 ctx
->gain_mem
= FFMIN(ctx
->gain_mem
, pitch_gain
);
435 gain_code
*= ctx
->gain_mem
;
437 for (j
= 0; j
< SUBFR_SIZE
; j
++)
438 fixed_vector
[j
] = excitation
[j
] - gain_code
* fixed_vector
[j
];
440 if (ctx
->mode
== MODE_5k0
) {
441 postfilter_5k0(ctx
, pAz
, fixed_vector
);
443 ff_celp_lp_synthesis_filterf(ctx
->postfilter_syn5k0
+ LP_FILTER_ORDER
+ i
*SUBFR_SIZE
,
444 pAz
, excitation
, SUBFR_SIZE
,
448 ff_celp_lp_synthesis_filterf(synth
+ i
*SUBFR_SIZE
, pAz
, fixed_vector
,
449 SUBFR_SIZE
, LP_FILTER_ORDER
);
451 excitation
+= SUBFR_SIZE
;
454 memcpy(synth
- LP_FILTER_ORDER
, synth
+ frame_size
- LP_FILTER_ORDER
,
455 LP_FILTER_ORDER
* sizeof(float));
457 if (ctx
->mode
== MODE_5k0
) {
458 for (i
= 0; i
< subframe_count
; i
++) {
459 float energy
= avpriv_scalarproduct_float_c(ctx
->postfilter_syn5k0
+ LP_FILTER_ORDER
+ i
* SUBFR_SIZE
,
460 ctx
->postfilter_syn5k0
+ LP_FILTER_ORDER
+ i
* SUBFR_SIZE
,
462 ff_adaptive_gain_control(&synth
[i
* SUBFR_SIZE
],
463 &synth
[i
* SUBFR_SIZE
], energy
,
464 SUBFR_SIZE
, 0.9, &ctx
->postfilter_agc
);
467 memcpy(ctx
->postfilter_syn5k0
, ctx
->postfilter_syn5k0
+ frame_size
,
468 LP_FILTER_ORDER
*sizeof(float));
470 memmove(ctx
->excitation
, excitation
- PITCH_DELAY_MAX
- L_INTERPOL
,
471 (PITCH_DELAY_MAX
+ L_INTERPOL
) * sizeof(float));
473 ff_acelp_apply_order_2_transfer_function(out_data
, synth
,
474 (const float[2]) {-1.99997 , 1.000000000},
475 (const float[2]) {-1.93307352, 0.935891986},
477 ctx
->highpass_filt_mem
,
481 static av_cold
int sipr_decoder_init(AVCodecContext
* avctx
)
483 SiprContext
*ctx
= avctx
->priv_data
;
486 switch (avctx
->block_align
) {
487 case 20: ctx
->mode
= MODE_16k
; break;
488 case 19: ctx
->mode
= MODE_8k5
; break;
489 case 29: ctx
->mode
= MODE_6k5
; break;
490 case 37: ctx
->mode
= MODE_5k0
; break;
492 if (avctx
->bit_rate
> 12200) ctx
->mode
= MODE_16k
;
493 else if (avctx
->bit_rate
> 7500 ) ctx
->mode
= MODE_8k5
;
494 else if (avctx
->bit_rate
> 5750 ) ctx
->mode
= MODE_6k5
;
495 else ctx
->mode
= MODE_5k0
;
496 av_log(avctx
, AV_LOG_WARNING
,
497 "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64
"\n",
498 avctx
->block_align
, modes
[ctx
->mode
].mode_name
, avctx
->bit_rate
);
501 av_log(avctx
, AV_LOG_DEBUG
, "Mode: %s\n", modes
[ctx
->mode
].mode_name
);
503 if (ctx
->mode
== MODE_16k
) {
504 ff_sipr_init_16k(ctx
);
505 ctx
->decode_frame
= ff_sipr_decode_frame_16k
;
507 ctx
->decode_frame
= decode_frame
;
510 for (i
= 0; i
< LP_FILTER_ORDER
; i
++)
511 ctx
->lsp_history
[i
] = cos((i
+1) * M_PI
/ (LP_FILTER_ORDER
+ 1));
513 for (i
= 0; i
< 4; i
++)
514 ctx
->energy_history
[i
] = -14;
516 av_channel_layout_uninit(&avctx
->ch_layout
);
517 avctx
->ch_layout
= (AVChannelLayout
)AV_CHANNEL_LAYOUT_MONO
;
518 avctx
->sample_fmt
= AV_SAMPLE_FMT_FLT
;
523 static int sipr_decode_frame(AVCodecContext
*avctx
, AVFrame
*frame
,
524 int *got_frame_ptr
, AVPacket
*avpkt
)
526 SiprContext
*ctx
= avctx
->priv_data
;
527 const uint8_t *buf
=avpkt
->data
;
529 const SiprModeParam
*mode_par
= &modes
[ctx
->mode
];
532 int subframe_size
= ctx
->mode
== MODE_16k
? L_SUBFR_16k
: SUBFR_SIZE
;
536 if (avpkt
->size
< (mode_par
->bits_per_frame
>> 3)) {
537 av_log(avctx
, AV_LOG_ERROR
,
538 "Error processing packet: packet size (%d) too small\n",
540 return AVERROR_INVALIDDATA
;
543 /* get output buffer */
544 frame
->nb_samples
= mode_par
->frames_per_packet
* subframe_size
*
545 mode_par
->subframe_count
;
546 if ((ret
= ff_get_buffer(avctx
, frame
, 0)) < 0)
548 samples
= (float *)frame
->data
[0];
550 init_get_bits(&gb
, buf
, mode_par
->bits_per_frame
);
552 for (i
= 0; i
< mode_par
->frames_per_packet
; i
++) {
553 decode_parameters(&parm
, &gb
, mode_par
);
555 ctx
->decode_frame(ctx
, &parm
, samples
);
557 samples
+= subframe_size
* mode_par
->subframe_count
;
562 return mode_par
->bits_per_frame
>> 3;
565 const FFCodec ff_sipr_decoder
= {
567 .p
.long_name
= NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
568 .p
.type
= AVMEDIA_TYPE_AUDIO
,
569 .p
.id
= AV_CODEC_ID_SIPR
,
570 .priv_data_size
= sizeof(SiprContext
),
571 .init
= sipr_decoder_init
,
572 FF_CODEC_DECODE_CB(sipr_decode_frame
),
573 .p
.capabilities
= AV_CODEC_CAP_DR1
| AV_CODEC_CAP_CHANNEL_CONF
,
574 .caps_internal
= FF_CODEC_CAP_INIT_THREADSAFE
,