Native python approach:
You can use comprehension and get the equality values for each unique value using set(<sequence>), then convert the boolean to int to get 0,1 values.
>>> ls =[1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4]
>>> {v:[int(v==i) for i in ls] for v in set(ls)}
{1: [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
2: [0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
3: [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
4: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]}
Numpy approach:
Get the unique values for the list using np.unique then expand the axis and transpose the array, then expand the axis for the list also and repeat it n times where n is the number of unique values, finally do the equality comparison and convert it to integer type:
import numpy as np
ls = [1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4]
uniques = np.expand_dims(np.unique(ls), 0).T
result = (np.repeat(np.expand_dims(ls, 0), uniques.shape[0], 0)==uniques).astype(int)
OUTPUT:
print(result)
[[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1]]